Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Sep 1;94(3):749–754. doi: 10.1083/jcb.94.3.749

Immunological localization of a major karyoskeletal protein in nucleoli of oocytes and somatic cells of Xenopus laevis

PMCID: PMC2112216  PMID: 6752154

Abstract

Oocyte nuclei of Xenopus laevis contain two major karyoskeletal proteins characterized by their resistance to extractions in high salt buffers and the detergent Triton X-100, i.e. a polypeptide of 68,000 mol wt which is located in the core complex-lamina structure and a polypeptide of 145,000 mol wt enriched in nucleolar fractions. Both proteins are also different by tryptic peptide maps and immunological determinants. Mouse antibodies were raised against insoluble karyoskeletal proteins from Xenopus oocytes and analyzed by immunoblotting procedures. Affinity purified antibodies were prepared using antigens bound to nitrocellulose paper. In immunofluorescence microscopy of Xenopus oocytes purified antibodies against the polypeptide of 145,000 mol wt showed strong staining of nucleoli, with higher concentration in the nucleolar cortex, and of smaller nucleoplasmic bodies. In various other cells including hepatocytes, Sertoli cells, spermatogonia, and cultured kidney epithelial cells antibody staining was localized in small subnucleolar granules. The results support the conclusion that this "insoluble" protein is a major nucleus-specific protein which is specifically associated with--and characteristic of--nucleoli and certain nucleolus-related nuclear bodies. It represents the first case of a positive localization of a karyoskeletal protein in the nuclear interior, i.e. away from the pore complex-lamina structure of the nuclear cortex.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adolph K. W. Organization of chromosomes in HeLa cells: isolation of histone-depleted nuclei and nuclear scaffolds. J Cell Sci. 1980 Apr;42:291–304. doi: 10.1242/jcs.42.1.291. [DOI] [PubMed] [Google Scholar]
  2. Agutter P. S., Richardson J. C. Nuclear non-chromatin proteinaceous structures: their role in the organization and function of the interphase nucleus. J Cell Sci. 1980 Aug;44:395–435. doi: 10.1242/jcs.44.1.395. [DOI] [PubMed] [Google Scholar]
  3. Bona M., Scheer U., Bautz E. K. Antibodies of RNA polymerase II (B) inhibit transcription in Lampbrush chromosomes after microinjection into living amphibian oocytes. J Mol Biol. 1981 Sep 5;151(1):81–99. doi: 10.1016/0022-2836(81)90222-9. [DOI] [PubMed] [Google Scholar]
  4. Catino J. J., Busch H., Daskal Y., Yeoman L. C. Subcellular localization of DNA-binding protein BA by immunofluorescence and immunoelectron microscopy. J Cell Biol. 1979 Nov;83(2 Pt 1):462–467. doi: 10.1083/jcb.83.2.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chooi W. Y., Leiby K. R. An electron microscopic method for localization of ribosomal proteins during transcription of ribosomal DNA: a method for studying protein assembly. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4823–4827. doi: 10.1073/pnas.78.8.4823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davis F. M., Gyorkey F., Busch R. K., Busch H. Nucleolar antigen found in several human tumors but not in the nontumor tissues studied. Proc Natl Acad Sci U S A. 1979 Feb;76(2):892–896. doi: 10.1073/pnas.76.2.892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Elder J. H., Pickett R. A., 2nd, Hampton J., Lerner R. A. Radioiodination of proteins in single polyacrylamide gel slices. Tryptic peptide analysis of all the major members of complex multicomponent systems using microgram quantities of total protein. J Biol Chem. 1977 Sep 25;252(18):6510–6515. [PubMed] [Google Scholar]
  8. Franke W. W., Kleinschmidt J. A., Spring H., Krohne G., Grund C., Trendelenburg M. F., Stoehr M., Scheer U. A nucleolar skeleton of protein filaments demonstrated in amplified nucleoli of Xenopus laevis. J Cell Biol. 1981 Aug;90(2):289–299. doi: 10.1083/jcb.90.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Franke W. W., Scheer U., Krohne G., Jarasch E. D. The nuclear envelope and the architecture of the nuclear periphery. J Cell Biol. 1981 Dec;91(3 Pt 2):39s–50s. doi: 10.1083/jcb.91.3.39s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Franke W. W., Scheer U., Zentgraf H., Trendelenburg M. F., Müller U., Krohne G., Spring H. Organization of transcribed and nontranscribed chromatin. Results Probl Cell Differ. 1980;11:15–36. doi: 10.1007/978-3-540-38267-6_3. [DOI] [PubMed] [Google Scholar]
  11. Gerace L., Blum A., Blobel G. Immunocytochemical localization of the major polypeptides of the nuclear pore complex-lamina fraction. Interphase and mitotic distribution. J Cell Biol. 1978 Nov;79(2 Pt 1):546–566. doi: 10.1083/jcb.79.2.546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jamrich M., Greenleaf A. L., Bautz F. A., Bautz E. K. Functional organization of polytene chromosomes. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 1):389–396. doi: 10.1101/sqb.1978.042.01.040. [DOI] [PubMed] [Google Scholar]
  13. Johnson G. D., Nogueira Araujo G. M. A simple method of reducing the fading of immunofluorescence during microscopy. J Immunol Methods. 1981;43(3):349–350. doi: 10.1016/0022-1759(81)90183-6. [DOI] [PubMed] [Google Scholar]
  14. Krohne G., Dabauvalle M. C., Franke W. W. Cell type-specific differences in protein composition of nuclear pore complex-lamina structures in oocytes and erythrocytes of Xenopus laevis. J Mol Biol. 1981 Sep 5;151(1):121–141. doi: 10.1016/0022-2836(81)90224-2. [DOI] [PubMed] [Google Scholar]
  15. Krohne G., Franke W. W., Ely S., D'Arcy A., Jost E. Localization of a nuclear envelope-associated protein by indirect immunofluorescence microscopy using antibodies against a major polypeptide from rat liver fractions enriched in nuclear envelope-associated material. Cytobiologie. 1978 Oct;18(1):22–38. [PubMed] [Google Scholar]
  16. Krohne G., Franke W. W., Scheer U. The major polypeptides of the nuclear pore complex. Exp Cell Res. 1978 Oct 1;116(1):85–102. doi: 10.1016/0014-4827(78)90067-8. [DOI] [PubMed] [Google Scholar]
  17. Lerner E. A., Lerner M. R., Janeway C. A., Jr, Steitz J. A. Monoclonal antibodies to nucleic acid-containing cellular constituents: probes for molecular biology and autoimmune disease. Proc Natl Acad Sci U S A. 1981 May;78(5):2737–2741. doi: 10.1073/pnas.78.5.2737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Miller L., Gonzales F. The relationship of ribosomal RNA synthesis to the formation of segregated nucleoli and nucleolus-like bodies. J Cell Biol. 1976 Dec;71(3):939–949. doi: 10.1083/jcb.71.3.939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Moreno Diaz de la Espina S., Franke W. W., Krohne G., Trendelenburg M. F., Grund C., Scheer U. Medusoid fibril bodies: a novel type of nuclear filament of diameter 8 to 12 nm with periodic ultrastructure demonstrated in oocytes of Xenopus laevis. Eur J Cell Biol. 1982 Jun;27(2):141–150. [PubMed] [Google Scholar]
  20. Olmsted J. B. Affinity purification of antibodies from diazotized paper blots of heterogeneous protein samples. J Biol Chem. 1981 Dec 10;256(23):11955–11957. [PubMed] [Google Scholar]
  21. Phillips S. G., Phillips D. M. Nucleolus-like bodies in micronuclei of cultured Xenopus cells. Exp Cell Res. 1979 May;120(2):295–306. doi: 10.1016/0014-4827(79)90390-2. [DOI] [PubMed] [Google Scholar]
  22. Scalenghe F., Buscaglia M., Steinheil C., Crippa M. Large scale isolation of nuclei and nucleoli from vitellogenic oocytes of Xenopus laevis. Chromosoma. 1978 May 16;66(4):299–308. doi: 10.1007/BF00328531. [DOI] [PubMed] [Google Scholar]
  23. Scheer U., Kartenbeck J., Trendelenburg M. F., Stadler J., Franke W. W. Experimental disintegration of the nuclear envelope. Evidence for pore-connecting fibrils. J Cell Biol. 1976 Apr;69(1):1–18. doi: 10.1083/jcb.69.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Scheer U., Trendelenburg F., Franke W. W. Effects of actinomycin D on the association of newly formed ribonucleoproteins with the cistrons of ribosomal RNA in Triturus oocytes. J Cell Biol. 1975 Apr;65(1):163–179. doi: 10.1083/jcb.65.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Scheer U., Trendelenburg M. F., Franke W. W. Regulation of transcription of genes of ribosomal rna during amphibian oogenesis. A biochemical and morphological study. J Cell Biol. 1976 May;69(2):465–489. doi: 10.1083/jcb.69.2.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stick R., Hausen P. Immunological analysis of nuclear lamina proteins. Chromosoma. 1980;80(2):219–236. doi: 10.1007/BF00286301. [DOI] [PubMed] [Google Scholar]
  27. Stick R., Krohne G. Immunological localization of the major architectural protein associated with the nuclear envelope of the Xenopus laevis oocyte. Exp Cell Res. 1982 Apr;138(2):319–313. doi: 10.1016/0014-4827(82)90181-1. [DOI] [PubMed] [Google Scholar]
  28. Todorov I. T., Hadjiolov A. A. A precursor to the small ribosome in nucleoli of Friend erythroleukemia cells. Cell Biol Int Rep. 1981 Jul;5(7):711–716. doi: 10.1016/0309-1651(81)90192-2. [DOI] [PubMed] [Google Scholar]
  29. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES