Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Jun 1;98(6):2064–2076. doi: 10.1083/jcb.98.6.2064

Monomer-polymer equilibria in the axon: direct measurement of tubulin and actin as polymer and monomer in axoplasm

PMCID: PMC2113063  PMID: 6202702

Abstract

The monomer-polymer equilibria for tubulin and actin were analyzed for the cytoskeleton of the squid giant axon. Two methods were evaluated for measuring the concentrations of monomer, soluble (equilibrium) polymer, and stable polymer in extruded axoplasm. One method, the Kinetic Equilibration Paradigm ( KEP ), employs the basic principles of diffusion to distinguish freely diffusible monomer from proteins that are present in the form of polymer. The other method is pharmacological and employs either taxol or phalloidin to stabilize the microtubules and microfilaments, respectively. The results of the two methods agree and demonstrate that 22-36% of the tubulin and 41-47% of the actin are monomeric. The in vivo concentration of monomeric actin and tubulin were two to three times higher than the concentration required to polymerize these proteins in vitro, suggesting that assembly of these proteins is regulated by additional mechanisms in the axon. A significant fraction of the polymerized actin and tubulin in the axoplasm was stable microtubules and microfilaments, which suggests that the dissociation reaction is blocked at both ends of these polymers. These results are discussed in relationship to the axonal transport of the cytoskeleton and with regard to the ability of axons to change their shape in response to environmental stimuli.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blikstad I., Markey F., Carlsson L., Persson T., Lindberg U. Selective assay of monomeric and filamentous actin in cell extracts, using inhibition of deoxyribonuclease I. Cell. 1978 Nov;15(3):935–943. doi: 10.1016/0092-8674(78)90277-5. [DOI] [PubMed] [Google Scholar]
  2. Brady S. T., Lasek R. J., Allen R. D. Fast axonal transport in extruded axoplasm from squid giant axon. Science. 1982 Dec 10;218(4577):1129–1131. doi: 10.1126/science.6183745. [DOI] [PubMed] [Google Scholar]
  3. Carlsson L., Nyström L. E., Sundkvist I., Markey F., Lindberg U. Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells. J Mol Biol. 1977 Sep 25;115(3):465–483. doi: 10.1016/0022-2836(77)90166-8. [DOI] [PubMed] [Google Scholar]
  4. DEFFNER G. G., HAFTER R. E. Chemical investigations of the giant nerve fibers of the squid. IV. Acid-base balance in axoplasm. Biochim Biophys Acta. 1960 Aug 12;42:200–205. doi: 10.1016/0006-3002(60)90781-2. [DOI] [PubMed] [Google Scholar]
  5. DEFFNER G. G. The dialyzable free organic constituents of squid blood; a comparison with nerve axoplasm. Biochim Biophys Acta. 1961 Feb 18;47:378–388. doi: 10.1016/0006-3002(61)90298-0. [DOI] [PubMed] [Google Scholar]
  6. Fine R. E., Taylor L. Decreased actin and tubulin synthesis in 3T3 cells after transformation by SV40 virus. Exp Cell Res. 1976 Oct 1;102(1):162–168. doi: 10.1016/0014-4827(76)90311-6. [DOI] [PubMed] [Google Scholar]
  7. Friede R. L., Bischhausen R. The fine structure of stumps of transected nerve fibers in subserial sections. J Neurol Sci. 1980 Jan;44(2-3):181–203. doi: 10.1016/0022-510x(80)90126-4. [DOI] [PubMed] [Google Scholar]
  8. Gilbert D. S. Axoplasm architecture and physical properties as seen in the Myxicola giant axon. J Physiol. 1975 Dec;253(1):257–301. doi: 10.1113/jphysiol.1975.sp011190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harris H. E., Weeds A. G. Platelet actin: sub-cellular distribution and association with profilin. FEBS Lett. 1978 Jun 1;90(1):84–88. doi: 10.1016/0014-5793(78)80303-2. [DOI] [PubMed] [Google Scholar]
  10. Hill T. L., Kirschner M. W. Bioenergetics and kinetics of microtubule and actin filament assembly-disassembly. Int Rev Cytol. 1982;78:1–125. [PubMed] [Google Scholar]
  11. Hoffman P. N., Lasek R. J. Axonal transport of the cytoskeleton in regenerating motor neurons: constancy and change. Brain Res. 1980 Dec 8;202(2):317–333. doi: 10.1016/0006-8993(80)90144-4. [DOI] [PubMed] [Google Scholar]
  12. Huneeus F. C., Davison P. F. Fibrillar proteins from squid axons. I. Neurofilament protein. J Mol Biol. 1970 Sep 28;52(3):415–428. doi: 10.1016/0022-2836(70)90410-9. [DOI] [PubMed] [Google Scholar]
  13. Karr T. L., Kristofferson D., Purich D. L. Mechanism of microtubule depolymerization. Correlation of rapid induced disassembly experiments with a kinetic model for endwise depolymerization. J Biol Chem. 1980 Sep 25;255(18):8560–8566. [PubMed] [Google Scholar]
  14. Karr T. L., Purich D. L. A microtubule assembly/disassembly model based on drug effects and depolymerization kinetics after rapid dilution. J Biol Chem. 1979 Nov 10;254(21):10885–10888. [PubMed] [Google Scholar]
  15. Kirschner M. W. Implications of treadmilling for the stability and polarity of actin and tubulin polymers in vivo. J Cell Biol. 1980 Jul;86(1):330–334. doi: 10.1083/jcb.86.1.330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lasek R. J., Gainer H., Barker J. L. Cell-to-cell transfer of glial proteins to the squid giant axon. The glia-neuron protein trnasfer hypothesis. J Cell Biol. 1977 Aug;74(2):501–523. doi: 10.1083/jcb.74.2.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lasek R. J. The dynamic ordering of neuronal cytoskeletons. Neurosci Res Program Bull. 1981 Feb;19(1):7–32. [PubMed] [Google Scholar]
  18. Lengsfeld A. M., Löw I., Wieland T., Dancker P., Hasselbach W. Interaction of phalloidin with actin. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2803–2807. doi: 10.1073/pnas.71.7.2803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lockwood A. H. Molecules in mammalian brain that interact with the colchicine site on tubulin. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1184–1188. doi: 10.1073/pnas.76.3.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Merriam R. W., Clark T. G. Actin in Xenopus oocytes. II. Intracellular distribution and polymerizability. J Cell Biol. 1978 May;77(2):439–447. doi: 10.1083/jcb.77.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Metuzals J., Hodge A. J., Lasek R. J., Kaiserman-Abramof I. R. Neurofilamentous network and filamentous matrix preserved and isolated by different techniques from squid giant axon. Cell Tissue Res. 1983;228(3):415–432. doi: 10.1007/BF00211465. [DOI] [PubMed] [Google Scholar]
  22. Morris J. R., Lasek R. J. Stable polymers of the axonal cytoskeleton: the axoplasmic ghost. J Cell Biol. 1982 Jan;92(1):192–198. doi: 10.1083/jcb.92.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Murphy D. B., Borisy G. G. Association of high-molecular-weight proteins with microtubules and their role in microtubule assembly in vitro. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2696–2700. doi: 10.1073/pnas.72.7.2696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Murphy D. B., Johnson K. A., Borisy G. G. Role of tubulin-associated proteins in microtubule nucleation and elongation. J Mol Biol. 1977 Nov 25;117(1):33–52. doi: 10.1016/0022-2836(77)90021-3. [DOI] [PubMed] [Google Scholar]
  25. OOSAWA F., KASAI M. A theory of linear and helical aggregations of macromolecules. J Mol Biol. 1962 Jan;4:10–21. doi: 10.1016/s0022-2836(62)80112-0. [DOI] [PubMed] [Google Scholar]
  26. Olmsted J. B., Marcum J. M., Johnson K. A., Allen C., Borisy G. G. Microtuble assembly: some possible regulatory mechanisms. J Supramol Struct. 1974;2(2-4):429–450. doi: 10.1002/jss.400020230. [DOI] [PubMed] [Google Scholar]
  27. Olmsted J. B. Tubulin pools in differentiating neuroblastoma cells. J Cell Biol. 1981 Jun;89(3):418–423. doi: 10.1083/jcb.89.3.418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pipeleers D. G., Pipeleers-Marichal M. A., Kipnis D. M. Physiological regulation of total tubulin and polymerized tubulin in tissues. J Cell Biol. 1977 Aug;74(2):351–357. doi: 10.1083/jcb.74.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pipeleers D. G., Pipeleers-Marichal M. A., Sherline P., Kipnis D. M. A sensitive method for measuring polymerized and depolymerized forms of tubulin in tissues. J Cell Biol. 1977 Aug;74(2):341–350. doi: 10.1083/jcb.74.2.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pollard T. D., Mooseker M. S. Direct measurement of actin polymerization rate constants by electron microscopy of actin filaments nucleated by isolated microvillus cores. J Cell Biol. 1981 Mar;88(3):654–659. doi: 10.1083/jcb.88.3.654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rubin R. W., Warren R. H., Lukeman D. S., Clements E. Actin content and organization in normal and transformed cells in culture. J Cell Biol. 1978 Jul;78(1):28–35. doi: 10.1083/jcb.78.1.28. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rubin R. W., Weiss G. D. Direct biochemical measurements of microtubule assembly and disassembly in Chinese hamster ovary cells. The effect of intercellular contact, cold, D2O, and N6,O2'-dibutyryl cyclic adenosine monophosphate. J Cell Biol. 1975 Jan;64(1):42–53. doi: 10.1083/jcb.64.1.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schiff P. B., Fant J., Horwitz S. B. Promotion of microtubule assembly in vitro by taxol. Nature. 1979 Feb 22;277(5698):665–667. doi: 10.1038/277665a0. [DOI] [PubMed] [Google Scholar]
  34. Schiff P. B., Horwitz S. B. Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1561–1565. doi: 10.1073/pnas.77.3.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sherline P., Schiavone K. Immunofluorescence localization of proteins of high molecular weight along intracellular microtubules. Science. 1977 Dec 9;198(4321):1038–1040. doi: 10.1126/science.337490. [DOI] [PubMed] [Google Scholar]
  36. Vallee R. B. A taxol-dependent procedure for the isolation of microtubules and microtubule-associated proteins (MAPs). J Cell Biol. 1982 Feb;92(2):435–442. doi: 10.1083/jcb.92.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wegner A., Engel J. Kinetics of the cooperative association of actin to actin filaments. Biophys Chem. 1975 Jul;3(3):215–225. doi: 10.1016/0301-4622(75)80013-5. [DOI] [PubMed] [Google Scholar]
  38. Wegner A. Head to tail polymerization of actin. J Mol Biol. 1976 Nov;108(1):139–150. doi: 10.1016/s0022-2836(76)80100-3. [DOI] [PubMed] [Google Scholar]
  39. Wehland J., Osborn M., Weber K. Phalloidin-induced actin polymerization in the cytoplasm of cultured cells interferes with cell locomotion and growth. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5613–5617. doi: 10.1073/pnas.74.12.5613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Weisenberg R. C. Changes in the organization of tubulin during meiosis in the eggs of the surf clam, Spisula solidissima. J Cell Biol. 1972 Aug;54(2):266–278. doi: 10.1083/jcb.54.2.266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wieland T. Modification of actins by phallotoxins. Naturwissenschaften. 1977 Jun;64(6):303–309. doi: 10.1007/BF00446784. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES