Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Aug 1;99(2):373–377. doi: 10.1083/jcb.99.2.373

The eucaryotic aminoacyl-tRNA synthetase complex: suggestions for its structure and function

PMCID: PMC2113280  PMID: 6746733

Abstract

Aminoacyl-tRNA synthetases from eucaryotic cells generally are isolated as high molecular weight complexes comprised of multiple synthetase activities, and often containing other components as well. A model is proposed for the synthetase complex in which hydrophobic extensions on the proteins serve to maintain them in their high molecular weight form, but are not needed for catalytic activity. The structural similarity of these enzymes to certain membrane-bound proteins, and its implications for synthetase localization and function in vivo, are discussed.

Full Text

The Full Text of this article is available as a PDF (554.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Airhart J., Vidrich A., Khairallah E. A. Compartmentation of free amino acids for protein synthesis in rat liver. Biochem J. 1974 Jun;140(3):539–545. doi: 10.1042/bj1400539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bandyopadhyay A. K., Deutscher M. P. Complex of aminoacyl-transfer RNA synthetases. J Mol Biol. 1971 Aug 28;60(1):113–122. doi: 10.1016/0022-2836(71)90451-7. [DOI] [PubMed] [Google Scholar]
  3. Bandyopadhyay A. K., Deutscher M. P. Lipids associated with the aminoacyl-transfer RNA synthetase complex. J Mol Biol. 1973 Feb 25;74(2):257–261. doi: 10.1016/0022-2836(73)90112-5. [DOI] [PubMed] [Google Scholar]
  4. Brunner J., Hauser H., Semenza G. Single bilayer lipid-protein vesicles formed from phosphatidylcholine and small intestinal sucrase.isomaltase. J Biol Chem. 1978 Oct 25;253(20):7538–7546. [PubMed] [Google Scholar]
  5. Cassio D., Waller J. P. Modification of methionyl-tRNA synthetase by proteolytic cleavage and properties of the trypsin-modified enzyme. Eur J Biochem. 1971 May 28;20(2):283–300. doi: 10.1111/j.1432-1033.1971.tb01393.x. [DOI] [PubMed] [Google Scholar]
  6. Charezinski M., Borkowski T. Occurrence of aminoacyl-tRNA synthetase complexes in calf brain. Arch Biochem Biophys. 1981 Apr 1;207(2):241–247. doi: 10.1016/0003-9861(81)90030-8. [DOI] [PubMed] [Google Scholar]
  7. Dang C. V., Dang C. V. Multienzyme complexes of eukaryotic aminoacyl-tRNA synthetases. Biosci Rep. 1983 Jun;3(6):527–538. doi: 10.1007/BF01120696. [DOI] [PubMed] [Google Scholar]
  8. Dang C. V., Yang D. C. Affinity chromatography of rat liver aminoacyl-tRNA synthetase complex. Biochem Biophys Res Commun. 1978 Feb 28;80(4):709–714. doi: 10.1016/0006-291x(78)91302-5. [DOI] [PubMed] [Google Scholar]
  9. Dang C. V., Yang D. C. High molecular weight complexes of eukaryotic aminoacyl-tRNA synthetases. Int J Biochem. 1982;14(7):539–543. doi: 10.1016/0020-711x(82)90030-1. [DOI] [PubMed] [Google Scholar]
  10. Dang C. V., Yang D. C., Pollard T. D. Association of methionyl-tRNA synthetase with detergent-insoluble components of the rough endoplasmic reticulum. J Cell Biol. 1983 Apr;96(4):1138–1147. doi: 10.1083/jcb.96.4.1138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Denney R. M. Detection and partial purification of rapidly sedimenting forms of aminoacyl-transfer ribonucleic acid synthetases from human placenta. Arch Biochem Biophys. 1977 Sep;183(1):156–167. doi: 10.1016/0003-9861(77)90430-1. [DOI] [PubMed] [Google Scholar]
  12. Desnuelle P. The Tenth Sir Hans Krebs Lecture. Intestinal and renal aminopeptidase: a model of a transmembrane protein. Eur J Biochem. 1979 Nov 1;101(1):1–11. doi: 10.1111/j.1432-1033.1979.tb04209.x. [DOI] [PubMed] [Google Scholar]
  13. Deutscher M. P., Ni R. C. Purification of a low molecular weight form of rat liver arginyl-tRNA synthetase. J Biol Chem. 1982 Jun 10;257(11):6003–6006. [PubMed] [Google Scholar]
  14. Dimitrijevic L., Godefroy-Colburn T. Interaction entre tARN-ligases et lipides. FEBS Lett. 1974 Sep 1;45(1):194–201. doi: 10.1016/0014-5793(74)80844-6. [DOI] [PubMed] [Google Scholar]
  15. Dimitrijevic L. Intracellular localization of yeast (Saccharomyces cerevisiae) lysyl - tRNA synthetase. FEBS Lett. 1977 Jul 1;79(1):37–41. doi: 10.1016/0014-5793(77)80345-1. [DOI] [PubMed] [Google Scholar]
  16. Frielle T., Curthoys N. P. Characterization of the membrane binding domain of gamma-glutamyltranspeptidase by specific labeling techniques. Biochemistry. 1983 Dec 6;22(25):5709–5714. doi: 10.1021/bi00294a005. [DOI] [PubMed] [Google Scholar]
  17. Fulton A. B., Wan K. M., Penman S. The spatial distribution of polyribosomes in 3T3 cells and the associated assembly of proteins into the skeletal framework. Cell. 1980 Jul;20(3):849–857. doi: 10.1016/0092-8674(80)90331-1. [DOI] [PubMed] [Google Scholar]
  18. Gehrke L., Ilan J. Preferential utilization of exogenously supplied leucine for protein synthesis in estradiol-induced and uninduced cockerel liver explants. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3274–3278. doi: 10.1073/pnas.80.11.3274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gum J. R., Strobel H. W. Purified NADPH cytochrome P-450 reductase. Interaction with hepatic microsomes and phospholipid vesicles. J Biol Chem. 1979 May 25;254(10):4177–4185. [PubMed] [Google Scholar]
  20. Hele P., Hebert L. Occurrence of a complex of aminoacryl-tRNA synthetases in lactating rat mammary gland. Biochim Biophys Acta. 1977 Dec 2;479(3):311–321. doi: 10.1016/0005-2787(77)90113-7. [DOI] [PubMed] [Google Scholar]
  21. Hod Y., Hershko A. Relationship of the pool of intracellular valine to protein synthesis and degradation in cultured cells. J Biol Chem. 1976 Jul 25;251(14):4458–4457. [PubMed] [Google Scholar]
  22. Hradec J., Dusek Z. Effect of cholesteryl 14-methylhexadecanoate on the activity of some amino acid-transfer ribonucleic acid ligases from mammalian tissues. Biochem J. 1969 Dec;115(5):873–880. doi: 10.1042/bj1150873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jasin M., Regan L., Schimmel P. Modular arrangement of functional domains along the sequence of an aminoacyl tRNA synthetase. Nature. 1983 Dec 1;306(5942):441–447. doi: 10.1038/306441a0. [DOI] [PubMed] [Google Scholar]
  24. Johnson D. L., Yang D. C. Stoichiometry and composition of an aminoacyl-tRNA synthetase complex from rat liver. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4059–4062. doi: 10.1073/pnas.78.7.4059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kellermann O., Brevet A., Tonetti H., Waller J. P. Macromolecular complexes of aminoacyl-tRNA synthetases from eukaryotes. 1. Extensive purification and characterization of the high-molecular-weight complex(es) of seven aminoacyl-tRNA synthetases from sheep liver. Eur J Biochem. 1979 Sep;99(3):541–550. doi: 10.1111/j.1432-1033.1979.tb13286.x. [DOI] [PubMed] [Google Scholar]
  26. Kellermann O., Tonetti H., Brevet A., Mirande M., Pailliez J. P., Waller J. P. Macromolecular complexes from sheep and rabbit containing seven aminoacyl-tRNA synthetases. I. Species specificity of the polypeptide composition. J Biol Chem. 1982 Sep 25;257(18):11041–11048. [PubMed] [Google Scholar]
  27. Kellermann O., Viel C., Waller J. P. Methionyl-tRNA synthetase from sheep mammary gland. Purification of a fully active monomeric enzyme derived from high-molecular-weight complexes by controlled proteolysis. Eur J Biochem. 1978 Jul 17;88(1):197–204. doi: 10.1111/j.1432-1033.1978.tb12438.x. [DOI] [PubMed] [Google Scholar]
  28. Kern D., Giegé R., Ebel J. P. Glycyl-tRNA synthetase from baker's yeast. Interconversion between active and inactive forms of the enzyme. Biochemistry. 1981 Jan 6;20(1):122–131. doi: 10.1021/bi00504a021. [DOI] [PubMed] [Google Scholar]
  29. Kern D., Giegé R., Ebel J. P. Purification and some properties of alanyl- and leucyl-tRNA synthetases from baker's yeast. Biochim Biophys Acta. 1981 Mar 26;653(1):83–90. doi: 10.1016/0005-2787(81)90106-4. [DOI] [PubMed] [Google Scholar]
  30. Lemaire G., Gros C., Epely S., Kaminski M., Labouesse B. Multiple forms of tryptophanyl-tRNA synthetase from beef pancreas. Eur J Biochem. 1975 Feb 3;51(1):237–252. doi: 10.1111/j.1432-1033.1975.tb03924.x. [DOI] [PubMed] [Google Scholar]
  31. Lenk R., Ransom L., Kaufmann Y., Penman S. A cytoskeletal structure with associated polyribosomes obtained from HeLa cells. Cell. 1977 Jan;10(1):67–78. doi: 10.1016/0092-8674(77)90141-6. [DOI] [PubMed] [Google Scholar]
  32. Lorber B., Kern D., Dietrich A., Gangloff J., Ebel J. P., Giegé R. Large scale purification and structural properties of yeast aspartyl-tRNA synthetase. Biochem Biophys Res Commun. 1983 Nov 30;117(1):259–267. doi: 10.1016/0006-291x(83)91569-3. [DOI] [PubMed] [Google Scholar]
  33. Masters C. J. Interactions between soluble enzymes and subcellular structure. CRC Crit Rev Biochem. 1981;11(2):105–143. doi: 10.3109/10409238109108700. [DOI] [PubMed] [Google Scholar]
  34. Mirande M., Cirakoğlu B., Waller J. P. Seven mammalian aminoacyl-tRNA synthetases associated within the same complex are functionally independent. Eur J Biochem. 1983 Mar 1;131(1):163–170. doi: 10.1111/j.1432-1033.1983.tb07244.x. [DOI] [PubMed] [Google Scholar]
  35. Mirande M., Gache Y., Le Corre D., Waller J. P. Seven mammalian aminoacyl-tRNA synthetases co-purified as high molecular weight entities are associated within the same complex. EMBO J. 1982;1(6):733–736. doi: 10.1002/j.1460-2075.1982.tb01238.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Mirande M., Pailliez J. P., Schwencke J., Waller J. P. Sedimentation behaviour of aminoacyl-tRNA synthetases from mixed lysates of yeast and rabbit liver. Biochim Biophys Acta. 1983 Sep 14;747(1-2):71–77. doi: 10.1016/0167-4838(83)90123-1. [DOI] [PubMed] [Google Scholar]
  37. Moore P. A., Jayme D. W., Oxender D. L. A role for aminoacyl-tRNA synthetases in the regulation of amino acid transport in mammalian cell lines. J Biol Chem. 1977 Nov 10;252(21):7427–7430. [PubMed] [Google Scholar]
  38. Pahuski E., Klekamp M., Condon T., Hampel A. E. Altered aminoacyl-tRNA synthetase complexes in CHO cell mutants. J Cell Physiol. 1983 Jan;114(1):82–87. doi: 10.1002/jcp.1041140114. [DOI] [PubMed] [Google Scholar]
  39. Putney S. D., Schimmel P. An aminoacyl tRNA synthetase binds to a specific DNA sequence and regulates its gene transcription. Nature. 1981 Jun 25;291(5817):632–635. doi: 10.1038/291632a0. [DOI] [PubMed] [Google Scholar]
  40. Reith M. E., Schotman P., van Zwieten B. J., Gispen W. H. The nature of the amino acid pool used for protein synthesis in rat brain slices. J Neurochem. 1979 Feb;32(2):413–420. doi: 10.1111/j.1471-4159.1979.tb00365.x. [DOI] [PubMed] [Google Scholar]
  41. Robertson J. H., Wheatley D. N. Pools and protein synthesis in mammalian cells. Biochem J. 1979 Mar 15;178(3):699–709. doi: 10.1042/bj1780699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Rouget P., Chapeville F. Leucyl-tRNA synthetase. Mechanism of leucyl-tRNA formation. Eur J Biochem. 1971 Dec 10;23(3):443–451. doi: 10.1111/j.1432-1033.1971.tb01639.x. [DOI] [PubMed] [Google Scholar]
  43. Saxholm H. J., Pitot H. C. Characterization of a proteolipid complex of aminoacyl-tRNA synthetases and transfer RNA from rat liver. Biochim Biophys Acta. 1979 May 24;562(3):386–399. doi: 10.1016/0005-2787(79)90103-5. [DOI] [PubMed] [Google Scholar]
  44. Shotwell M. A., Mattes P. M., Jayme D. W., Oxender D. L. Regulation of amino acid transport system L in Chinese hamster ovary cells. J Biol Chem. 1982 Mar 25;257(6):2974–2980. [PubMed] [Google Scholar]
  45. Sihag R. K., Deutscher M. P. Perturbation of the aminoacyl-tRNA synthetase complex by salts and detergents. Importance of hydrophobic interactions and possible involvement of lipids. J Biol Chem. 1983 Oct 10;258(19):11846–11850. [PubMed] [Google Scholar]
  46. Som K., Hardesty B. Isolation and partial characterization of an aminoacyl-tRNA synthetase complex from rabbit reticulocytes. Arch Biochem Biophys. 1975 Feb;166(2):507–517. doi: 10.1016/0003-9861(75)90414-2. [DOI] [PubMed] [Google Scholar]
  47. Spatz L., Strittmatter P. A form of cytochrome b5 that contains an additional hydrophobic sequence of 40 amino acid residues. Proc Natl Acad Sci U S A. 1971 May;68(5):1042–1046. doi: 10.1073/pnas.68.5.1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Strittmatter P., Rogers M. J. Apparent dependence of interactions between cytochrome b5 and cytochrome b5 reductase upon translational diffusion in dimyristoyl lecithin liposomes. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2658–2661. doi: 10.1073/pnas.72.7.2658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Tanaka K., Ichihara A. Different effect of amino acid deprivation on syntheses of intra- and extracellular proteins in rat hepatocytes in primary culture. J Biochem. 1983 Oct;94(4):1339–1348. doi: 10.1093/oxfordjournals.jbchem.a134479. [DOI] [PubMed] [Google Scholar]
  50. Vadeboncoeur C., Lapointe J. Properties of the cytoplasmic glutamyl-tRNA synthetase in high molecular weight complexes from bovine brain. Brain Res. 1980 Apr 21;188(1):129–138. doi: 10.1016/0006-8993(80)90562-4. [DOI] [PubMed] [Google Scholar]
  51. Van Dang C., Glinski R. L., Gainey P. C., Hilderman R. H. Physical and biochemical characterization of a purified arginyl-tRNA synthetase-lysyl-tRNA-synthetase complex from rat liver. Biochemistry. 1982 Apr 13;21(8):1959–1966. doi: 10.1021/bi00537a040. [DOI] [PubMed] [Google Scholar]
  52. Van Dang C., Mawhinney T. P., Hilderman R. H. Characterization of a homogeneous arginyl- and lysyl-tRNA synthetase complex isolated from rat liver. Arginyl- and lysyl-tRNA synthetases contain carbohydrates. Biochemistry. 1982 Sep 28;21(20):4891–4895. doi: 10.1021/bi00263a010. [DOI] [PubMed] [Google Scholar]
  53. Van Dang C., Yang D. C. Disassembly and gross structure of particulate aminoacyl-tRNA synthetases from rat liver. Isolation and the structural relationship of synthetase complexes. J Biol Chem. 1979 Jun 25;254(12):5350–5356. [PubMed] [Google Scholar]
  54. Van Venrooij W. J., Moonen H., Van Loon-Klaassen L. Source of amino acids used for protein synthesis in HeLa cells. Eur J Biochem. 1974 Dec 16;50(1):297–304. doi: 10.1111/j.1432-1033.1974.tb03898.x. [DOI] [PubMed] [Google Scholar]
  55. Van Venrooij W. J., Poort C., Kramer M. F., Jansen M. T. Relationship between extracellular amino acids and protein synthesis in vitro in the rat pancreas. Eur J Biochem. 1972 Nov 7;30(3):427–433. doi: 10.1111/j.1432-1033.1972.tb02114.x. [DOI] [PubMed] [Google Scholar]
  56. Vellekamp G. J., Kull F. J. Allotropism in aspartyl-tRNA synthetase from procine thyroid. Eur J Biochem. 1981 Aug;118(2):261–269. doi: 10.1111/j.1432-1033.1981.tb06395.x. [DOI] [PubMed] [Google Scholar]
  57. Vennegoor C., Bloemendal H. Occurrence and particle character of aminoacyl-tRNA synthetases in the post-microsomal fraction from rat liver. Eur J Biochem. 1972 Apr 24;26(4):462–473. doi: 10.1111/j.1432-1033.1972.tb01788.x. [DOI] [PubMed] [Google Scholar]
  58. Walker E. J., Treacy G. B., Jeffrey P. D. Molecular weights of mitochondrial and cytoplasmic aminoacyl-tRNA synthetases of beef liver and their complexes. Biochemistry. 1983 Apr 12;22(8):1934–1941. doi: 10.1021/bi00277a030. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES