Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Dec 1;99(6):2216–2222. doi: 10.1083/jcb.99.6.2216

Movement of a karyophilic protein through the nuclear pores of oocytes

PMCID: PMC2113580  PMID: 6501421

Abstract

It has recently been shown that large karyophilic proteins are transported across the nuclear envelope in amphibian oocytes. In consideration of this, the present experiments were performed to identify the specific sites within the envelope through which transport occurs and determine if molecular size is a limiting factor in the transport process. The following experimental procedure was employed: Colloidal gold particles, varying in size from approximately 20 to 170 A in diameter were coated with nucleoplasmin, a 165,000-mol-wt karyophilic protein, which is known to be transported through the envelope. The coated gold particles were microinjected into the cytoplasm of Xenopus oocytes, and the cells were fixed 15 min and 1 h later. The intracellular localization of the gold was then determined with the electron microscope. It was found that nucleoplasmin-coated particles readily enter the nucleus. On the basis of the distribution of the particles associated with the envelope, we concluded that transport occurs through the nuclear pores. Furthermore, the size distributions of the gold particles present in the nucleus and cytoplasm were not significantly different, indicating that the envelope does not discriminate among particles with diameters ranging from 50 to 200 A (the dimensions including the nucleoplasmin coat). Colloidal gold coated with trypsin-digested nucleoplasmin (which lacks the polypeptide domain required for transport) or exogenous polyvinylpyrrolidone were largely excluded from the nucleus and showed no evidence of transport.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonner W. M. Protein migration into nuclei. I. Frog oocyte nuclei in vivo accumulate microinjected histones, allow entry to small proteins, and exclude large proteins. J Cell Biol. 1975 Feb;64(2):421–430. doi: 10.1083/jcb.64.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. De Robertis E. M. Nucleocytoplasmic segregation of proteins and RNAs. Cell. 1983 Apr;32(4):1021–1025. doi: 10.1016/0092-8674(83)90285-4. [DOI] [PubMed] [Google Scholar]
  3. Dingwall C., Sharnick S. V., Laskey R. A. A polypeptide domain that specifies migration of nucleoplasmin into the nucleus. Cell. 1982 Sep;30(2):449–458. doi: 10.1016/0092-8674(82)90242-2. [DOI] [PubMed] [Google Scholar]
  4. Dumont J. N. Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J Morphol. 1972 Feb;136(2):153–179. doi: 10.1002/jmor.1051360203. [DOI] [PubMed] [Google Scholar]
  5. FELDHERR C. M. BINDING WITHIN THE NUCLEAR ANNULI AND ITS POSSIBLE EFFECT ON NUCLEOCYTOPLASMIC EXCHANGES. J Cell Biol. 1964 Jan;20:188–192. [PMC free article] [PubMed] [Google Scholar]
  6. Feldherr C. M., Cohen R. J., Ogburn J. A. Evidence for mediated protein uptake by amphibian oocyte nuclei. J Cell Biol. 1983 May;96(5):1486–1490. doi: 10.1083/jcb.96.5.1486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Feldherr C. M., Ogburn J. A. Mechanism for the selection of nuclear polypeptides in Xenopus oocytes. II. Two-dimensional gel analysis. J Cell Biol. 1980 Dec;87(3 Pt 1):589–593. doi: 10.1083/jcb.87.3.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Feldherr C. M. The uptake of endogenous proteins by oocyte nuclei. Exp Cell Res. 1975 Jul;93(2):411–419. doi: 10.1016/0014-4827(75)90467-x. [DOI] [PubMed] [Google Scholar]
  9. Franke W. W., Scheer U. Pathways of nucleocytoplasmic translocation of ribonucleoproteins. Symp Soc Exp Biol. 1974;(28):249–282. [PubMed] [Google Scholar]
  10. HARDING C. V., FELDHERR C. Semipermeability of the nuclear membrane in the intact cell. J Gen Physiol. 1959 Jul 20;42(6):1155–1165. doi: 10.1085/jgp.42.6.1155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kalt M. R., Tandler B. A study of fixation of early amphibian embryos for electron microscopy. J Ultrastruct Res. 1971 Sep;36(5):633–645. doi: 10.1016/s0022-5320(71)90020-7. [DOI] [PubMed] [Google Scholar]
  12. Laskey R. A., Honda B. M., Mills A. D., Finch J. T. Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature. 1978 Oct 5;275(5679):416–420. doi: 10.1038/275416a0. [DOI] [PubMed] [Google Scholar]
  13. Ledingham J. M., Simpson F. O. The use of p-phenylenediamine in the block to enhance osmium staining for electron microscopy. Stain Technol. 1972 Sep;47(5):239–243. doi: 10.3109/10520297209116543. [DOI] [PubMed] [Google Scholar]
  14. Miller D. S., Lau Y. T., Horowitz S. B. Artifacts caused by cell microinjection. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1426–1430. doi: 10.1073/pnas.81.5.1426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mills A. D., Laskey R. A., Black P., De Robertis E. M. An acidic protein which assembles nucleosomes in vitro is the most abundant protein in Xenopus oocyte nuclei. J Mol Biol. 1980 May 25;139(3):561–568. doi: 10.1016/0022-2836(80)90148-5. [DOI] [PubMed] [Google Scholar]
  16. Paine P. L., Moore L. C., Horowitz S. B. Nuclear envelope permeability. Nature. 1975 Mar 13;254(5496):109–114. doi: 10.1038/254109a0. [DOI] [PubMed] [Google Scholar]
  17. Stevens B. J., Swift H. RNA transport from nucleus to cytoplasm in Chironomus salivary glands. J Cell Biol. 1966 Oct;31(1):55–77. doi: 10.1083/jcb.31.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES