Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Apr 1;100(4):1126–1138. doi: 10.1083/jcb.100.4.1126

Endogenous and exogenous domain markers of the rat hepatocyte plasma membrane

PMCID: PMC2113772  PMID: 2984213

Abstract

We have used a combined biochemical and morphological approach to establish the suitability of certain endogenous and exogenous domain markers for monitoring the separation of rat hepatocyte plasma membrane domains in sucrose density gradients. As endogenous domain markers, we employed two of the integral plasma membrane protein antigens, HA 4 and CE 9, localized to the bile canalicular and sinusoidal/lateral domains, respectively, of the hepatocyte plasma membrane in rat liver tissue (Hubbard, A. L., J. R. Bartles, and L. T. Braiterman, 1985, J. Cell Biol., 100:1115-1125). We used immunoelectron microscopy with a colloidal gold probe to demonstrate that HA 4 and CE 9 retained their domain-specific localizations on isolated hepatocyte plasma membrane sheets. When the plasma membrane sheets were vesiculated by sonication and the resulting vesicles were centrifuged to equilibrium in sucrose density gradients, quantitative immunoblotting revealed that the vesicles containing HA 4 and those containing CE 9 exhibited distinct density profiles. The density profile for the bile canalicular vesicles (marked by HA 4) was characterized by a single peak at a density of 1.10 g/cm3. The density profile for the sinusoidal/lateral vesicles (marked by CE 9) was bimodal, with a peak in the body of the gradient at a density of 1.14 g/cm3 and a smaller amount in the pellet (density greater than or equal to 1.17 g/cm3). We used this sucrose gradient fractionation as a diagnostic procedure to assign domain localizations for several other hepatocyte plasma membrane antigens and enzyme activities. In addition, we used the technique to demonstrate that 125I- wheat germ agglutinin, introduced during isolated liver perfusion at 4 degrees C, can serve as an exogenous domain marker for the sinusoidal domain of the rat hepatocyte plasma membrane.

Full Text

The Full Text of this article is available as a PDF (4.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashwell G., Harford J. Carbohydrate-specific receptors of the liver. Annu Rev Biochem. 1982;51:531–554. doi: 10.1146/annurev.bi.51.070182.002531. [DOI] [PubMed] [Google Scholar]
  2. Bartles J. R., Hubbard A. L. 125I-wheat germ agglutinin blotting: increased sensitivity with polyvinylpyrrolidone quenching and periodate oxidation/reductive phenylamination. Anal Biochem. 1984 Jul;140(1):284–292. doi: 10.1016/0003-2697(84)90166-0. [DOI] [PubMed] [Google Scholar]
  3. Blitzer B. L., Boyer J. L. Cytochemical localization of Na+, K+-ATPase in the rat hepatocyte. J Clin Invest. 1978 Nov;62(5):1104–1108. doi: 10.1172/JCI109216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blouin A., Bolender R. P., Weibel E. R. Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study. J Cell Biol. 1977 Feb;72(2):441–455. doi: 10.1083/jcb.72.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Cereijido M., Robbins E. S., Dolan W. J., Rotunno C. A., Sabatini D. D. Polarized monolayers formed by epithelial cells on a permeable and translucent support. J Cell Biol. 1978 Jun;77(3):853–880. doi: 10.1083/jcb.77.3.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. De Mey J., Moeremans M., Geuens G., Nuydens R., De Brabander M. High resolution light and electron microscopic localization of tubulin with the IGS (immuno gold staining) method. Cell Biol Int Rep. 1981 Sep;5(9):889–899. doi: 10.1016/0309-1651(81)90204-6. [DOI] [PubMed] [Google Scholar]
  8. De Waele M., De Mey J., Moeremans M., De Brabander M., Van Camp B. Immunogold staining method for the light microscopic detection of leukocyte cell surface antigens with monoclonal antibodies: its application to the enumeration of lymphocyte subpopulations. J Histochem Cytochem. 1983 Mar;31(3):376–381. doi: 10.1177/31.3.6186731. [DOI] [PubMed] [Google Scholar]
  9. Dunn L. A., Holz R. W. Catecholamine secretion from digitonin-treated adrenal medullary chromaffin cells. J Biol Chem. 1983 Apr 25;258(8):4989–4993. [PubMed] [Google Scholar]
  10. GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Geuze H. J., Slot J. W., Strous G. J., Lodish H. F., Schwartz A. L. Immunocytochemical localization of the receptor for asialoglycoprotein in rat liver cells. J Cell Biol. 1982 Mar;92(3):865–870. doi: 10.1083/jcb.92.3.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Geuze H. J., Slot J. W., Strous G. J., Lodish H. F., Schwartz A. L. Intracellular site of asialoglycoprotein receptor-ligand uncoupling: double-label immunoelectron microscopy during receptor-mediated endocytosis. Cell. 1983 Jan;32(1):277–287. doi: 10.1016/0092-8674(83)90518-4. [DOI] [PubMed] [Google Scholar]
  13. Harford J., Lowe M., Tsunoo H., Ashwell G. Immunological approaches to the study of membrane receptors. A monoclonal antibody that inhibits the binding of asialoglycoproteins to the rat liver receptor. J Biol Chem. 1982 Nov 10;257(21):12685–12690. [PubMed] [Google Scholar]
  14. Herzlinger D. A., Ojakian G. K. Studies on the development and maintenance of epithelial cell surface polarity with monoclonal antibodies. J Cell Biol. 1984 May;98(5):1777–1787. doi: 10.1083/jcb.98.5.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hubbard A. L., Bartles J. R., Braiterman L. T. Identification of rat hepatocyte plasma membrane proteins using monoclonal antibodies. J Cell Biol. 1985 Apr;100(4):1115–1125. doi: 10.1083/jcb.100.4.1115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hubbard A. L., Ma A. Isolation of rat hepatocyte plasma membranes. II. Identification of membrane-associated cytoskeletal proteins. J Cell Biol. 1983 Jan;96(1):230–239. doi: 10.1083/jcb.96.1.230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hubbard A. L., Wall D. A., Ma A. Isolation of rat hepatocyte plasma membranes. I. Presence of the three major domains. J Cell Biol. 1983 Jan;96(1):217–229. doi: 10.1083/jcb.96.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hubbard A. L., Wilson G., Ashwell G., Stukenbrok H. An electron microscope autoradiographic study of the carbohydrate recognition systems in rat liver. I. Distribution of 125I-ligands among the liver cell types. J Cell Biol. 1979 Oct;83(1):47–64. doi: 10.1083/jcb.83.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kawaguchi K., Kuhlenschmidt M., Roseman S., Lee Y. C. Differential uptake of D-galactosyl- and D-glucosyl-neoglycoproteins by isolated rat hepatocytes. J Biol Chem. 1981 Mar 10;256(5):2230–2234. [PubMed] [Google Scholar]
  20. Lee Y. C., Stowell C. P., Krantz M. J. 2-Imino-2-methoxyethyl 1-thioglycosides: new reagents for attaching sugars to proteins. Biochemistry. 1976 Sep 7;15(18):3956–3963. doi: 10.1021/bi00663a008. [DOI] [PubMed] [Google Scholar]
  21. Matsuura S., Eto S., Kato K., Tashiro Y. Ferritin immunoelectron microscopic localization of 5'-nucleotidase on rat liver cell surface. J Cell Biol. 1984 Jul;99(1 Pt 1):166–173. doi: 10.1083/jcb.99.1.166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Matsuura S., Nakada H., Sawamura T., Tashiro Y. Distribution of an asialoglycoprotein receptor on rat hepatocyte cell surface. J Cell Biol. 1982 Dec;95(3):864–875. doi: 10.1083/jcb.95.3.864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Meier P. J., Sztul E. S., Reuben A., Boyer J. L. Structural and functional polarity of canalicular and basolateral plasma membrane vesicles isolated in high yield from rat liver. J Cell Biol. 1984 Mar;98(3):991–1000. doi: 10.1083/jcb.98.3.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Reik L., Petzold G. L., Higgins J. A., Greengard P., Barrnett R. J. Hormone-sensitive adenyl cyclase: cytochemical localization in rat liver. Science. 1970 Apr 17;168(3929):382–384. doi: 10.1126/science.168.3929.382. [DOI] [PubMed] [Google Scholar]
  25. Roman L. M., Hubbard A. L. A domain-specific marker for the hepatocyte plasma membrane. II. Ultrastructural localization of leucine aminopeptidase to the bile canalicular domain of isolated rat liver plasma membranes. J Cell Biol. 1984 Apr;98(4):1488–1496. doi: 10.1083/jcb.98.4.1488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Roman L. M., Hubbard A. L. A domain-specific marker for the hepatocyte plasma membrane. III. Isolation of bile canalicular membrane by immunoadsorption. J Cell Biol. 1984 Apr;98(4):1497–1504. doi: 10.1083/jcb.98.4.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Roman L. M., Hubbard A. L. A domain-specific marker for the hepatocyte plasma membrane: localization of leucine aminopeptidase to the bile canalicular domain. J Cell Biol. 1983 Jun;96(6):1548–1558. doi: 10.1083/jcb.96.6.1548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schenk D. B., Leffert H. L. Monoclonal antibodies to rat Na+,K+-ATPase block enzymatic activity. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5281–5285. doi: 10.1073/pnas.80.17.5281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schlesinger P. H., Doebber T. W., Mandell B. F., White R., DeSchryver C., Rodman J. S., Miller M. J., Stahl P. Plasma clearance of glycoproteins with terminal mannose and N-acetylglucosamine by liver non-parenchymal cells. Studies with beta-glucuronidase, N-acetyl-beta-D-glucosaminidase, ribonuclease B and agalacto-orosomucoid. Biochem J. 1978 Oct 15;176(1):103–109. doi: 10.1042/bj1760103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stahl P., Schlesinger P. H., Sigardson E., Rodman J. S., Lee Y. C. Receptor-mediated pinocytosis of mannose glycoconjugates by macrophages: characterization and evidence for receptor recycling. Cell. 1980 Jan;19(1):207–215. doi: 10.1016/0092-8674(80)90402-x. [DOI] [PubMed] [Google Scholar]
  31. Toda G., Oka H., Oda T., Ikeda Y. Subfractionation of rat liver plasma membrane. Uneven distribution of plasma membrane-bound enzymes on the liver cell surface. Biochim Biophys Acta. 1975 Nov 17;413(1):52–64. doi: 10.1016/0005-2736(75)90058-9. [DOI] [PubMed] [Google Scholar]
  32. Wall D. A., Hubbard A. L. Galactose-specific recognition system of mammalian liver: receptor distribution on the hepatocyte cell surface. J Cell Biol. 1981 Sep;90(3):687–696. doi: 10.1083/jcb.90.3.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wall D. A., Wilson G., Hubbard A. L. The galactose-specific recognition system of mammalian liver: the route of ligand internalization in rat hepatocytes. Cell. 1980 Aug;21(1):79–93. doi: 10.1016/0092-8674(80)90116-6. [DOI] [PubMed] [Google Scholar]
  34. Widnell C. C. Cytochemical localization of 5'-nucleotidase in subcellular fractions isolated from rat liver. I. The origin of 5'-nucleotidase activity in microsomes. J Cell Biol. 1972 Mar;52(3):542–558. doi: 10.1083/jcb.52.3.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wisher M. H., Evans W. H. Functional polarity of the rat hepatocyte surface membrane. Isolation and characterization of plasma-membrane subfractions from the blood-sinusoidal, bile-Canalicular and contiguous surfaces of the hepatocyte. Biochem J. 1975 Feb;146(2):375–388. doi: 10.1042/bj1460375. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES