Abstract
A prerequisite for many studies of neurons in culture is a means of determining their original identity. We needed such a technique to study the interactions in vitro between a class of spinal cord neurons, sympathetic preganglionic neurons, and their normal target, neurons from the sympathetic chain. Here, we describe how we use two highly fluorescent carbocyanine dyes, which differ in color but are otherwise similar, to identify neurons in culture. The long carbon chain carbocyanine dyes we use are lipid-soluble and so become incorporated into the plasma membrane. Neurons can be labeled either retrogradely or during dissociation. Some of the labeled membrane gradually becomes internalized and retains its fluorescence, allowing identification of cells for several weeks in culture. These dyes do not affect the survival, development, or basic physiological properties of neurons and do not spread detectably from labeled to unlabeled neurons. It seems likely that cells become retrogradely labeled mainly by lateral diffusion of dye in the plane of the membrane. If so, carbocyanine dyes may be most useful for retrograde labeling over relatively short distances. An additional feature of carbocyanine labeling is that neuronal processes are brightly fluorescent for the first few days in culture, presumably because dye rapidly diffuses into newly inserted membrane. We have used carbocyanine dyes to identify sympathetic preganglionic neurons in culture. Our results indicate that preganglionic neurons can survive in the absence of their target cells and that several aspects of their differentiation in the absence of target appear normal.
Full Text
The Full Text of this article is available as a PDF (2.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Axelrod D. Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. Biophys J. 1979 Jun;26(3):557–573. doi: 10.1016/S0006-3495(79)85271-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Axelrod D., Wight A., Webb W., Horwitz A. Influence of membrane lipids on acetylcholine receptor and lipid probe diffusion in cultured myotube membrane. Biochemistry. 1978 Aug 22;17(17):3604–3609. doi: 10.1021/bi00610a029. [DOI] [PubMed] [Google Scholar]
- Barde Y. A., Edgar D., Thoenen H. New neurotrophic factors. Annu Rev Physiol. 1983;45:601–612. doi: 10.1146/annurev.ph.45.030183.003125. [DOI] [PubMed] [Google Scholar]
- Bennett M. R., Lai K., Nurcombe V. Identification of embryonic motoneurons in vitro: their survival is dependent on skeletal muscle. Brain Res. 1980 May 26;190(2):537–542. doi: 10.1016/0006-8993(80)90295-4. [DOI] [PubMed] [Google Scholar]
- Bentivoglio M., Kuypers H. G., Catsman-Berrevoets C. E., Dann O. Fuorescent retrograde neuronal labeling in rat by means of substances binding specifically to adenine-thymine rich DNA. Neurosci Lett. 1979 May;12(2-3):235–240. doi: 10.1016/0304-3940(79)96068-3. [DOI] [PubMed] [Google Scholar]
- Berg D. K. New neuronal growth factors. Annu Rev Neurosci. 1984;7:149–170. doi: 10.1146/annurev.ne.07.030184.001053. [DOI] [PubMed] [Google Scholar]
- Betz W. Functional and non-functional contacts between ciliary neurones and muscle grown in vitro. J Physiol. 1976 Jan;254(1):75–86. doi: 10.1113/jphysiol.1976.sp011222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonhoeffer F., Huf J. Position-dependent properties of retinal axons and their growth cones. 1985 May 30-Jun 5Nature. 315(6018):409–410. doi: 10.1038/315409a0. [DOI] [PubMed] [Google Scholar]
- Bonhoeffer F., Huf J. Recognition of cell types by axonal growth cones in vitro. Nature. 1980 Nov 13;288(5787):162–164. doi: 10.1038/288162a0. [DOI] [PubMed] [Google Scholar]
- Bray D. Surface movements during the growth of single explanted neurons. Proc Natl Acad Sci U S A. 1970 Apr;65(4):905–910. doi: 10.1073/pnas.65.4.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calof A. L., Reichardt L. F. Motoneurons purified by cell sorting respond to two distinct activities in myotube-conditioned medium. Dev Biol. 1984 Nov;106(1):194–210. doi: 10.1016/0012-1606(84)90075-7. [DOI] [PubMed] [Google Scholar]
- Chalazonitis A., Greene L. A., Nirenberg M. Electrophysiological chracteristics of chick embryo sympathetic neurons in dissociated cell culture. Brain Res. 1974 Mar 22;68(2):235–252. doi: 10.1016/0006-8993(74)90393-x. [DOI] [PubMed] [Google Scholar]
- Chun L. L., Patterson P. H. Role of nerve growth factor in the development of rat sympathetic neurons in vitro. I. Survival, growth, and differentiation of catecholamine production. J Cell Biol. 1977 Dec;75(3):694–704. doi: 10.1083/jcb.75.3.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dembowsky K., Czachurski J., Seller H. Morphology of sympathetic preganglionic neurons in the thoracic spinal cord of the cat: an intracellular horseradish peroxidase study. J Comp Neurol. 1985 Aug 22;238(4):453–465. doi: 10.1002/cne.902380409. [DOI] [PubMed] [Google Scholar]
- Denis-Donini S., Glowinski J., Prochiantz A. Glial heterogeneity may define the three-dimensional shape of mouse mesencephalic dopaminergic neurones. Nature. 1984 Feb 16;307(5952):641–643. doi: 10.1038/307641a0. [DOI] [PubMed] [Google Scholar]
- Derzko Z., Jacobson K. Comparative lateral diffusion of fluorescent lipid analogues in phospholipid multibilayers. Biochemistry. 1980 Dec 23;19(26):6050–6057. doi: 10.1021/bi00567a016. [DOI] [PubMed] [Google Scholar]
- Dragsten P. R., Blumenthal R., Handler J. S. Membrane asymmetry in epithelia: is the tight junction a barrier to diffusion in the plasma membrane? Nature. 1981 Dec 24;294(5843):718–722. doi: 10.1038/294718a0. [DOI] [PubMed] [Google Scholar]
- Dryer S. E., Chiappinelli V. A. An intracellular study of synaptic transmission and dendritic morphology in sympathetic neurons of the chick embryo. Brain Res. 1985 Sep;354(1):99–111. doi: 10.1016/0165-3806(85)90073-2. [DOI] [PubMed] [Google Scholar]
- Fallon J. R. Preferential outgrowth of central nervous system neurites on astrocytes and Schwann cells as compared with nonglial cells in vitro. J Cell Biol. 1985 Jan;100(1):198–207. doi: 10.1083/jcb.100.1.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feldman E. L., Axelrod D., Schwartz M., Heacock A. M., Agranoff B. W. Studies on the localization of newly added membrane in growing neurites. J Neurobiol. 1981 Nov;12(6):591–598. doi: 10.1002/neu.480120607. [DOI] [PubMed] [Google Scholar]
- Greene L. A. Quantitative in vitro studies on the nerve growth factor (NGF) requirement of neurons. I. Sympathetic neurons. Dev Biol. 1977 Jul 1;58(1):96–105. doi: 10.1016/0012-1606(77)90076-8. [DOI] [PubMed] [Google Scholar]
- Hamburger V. Cell death in the development of the lateral motor column of the chick embryo. J Comp Neurol. 1975 Apr 15;160(4):535–546. doi: 10.1002/cne.901600408. [DOI] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Harper C. G., Gonatas J. O., Stieber A., Gonatas N. K. In vivo uptake of wheat germ agglutinin-horseradish peroxidase conjugates into neuronal GERL and lysosomes. Brain Res. 1980 Apr 28;188(2):465–472. doi: 10.1016/0006-8993(80)90045-1. [DOI] [PubMed] [Google Scholar]
- Honig M. G. The development of sensory projection patterns in embryonic chick hind limb. J Physiol. 1982 Sep;330:175–202. doi: 10.1113/jphysiol.1982.sp014336. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hume R. I., Honig M. G. Excitatory action of ATP on embryonic chick muscle. J Neurosci. 1986 Mar;6(3):681–690. doi: 10.1523/JNEUROSCI.06-03-00681.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobson K., Hou Y., Derzko Z., Wojcieszyn J., Organisciak D. Lipid lateral diffusion in the surface membrane of cells and in multibilayers formed from plasma membrane lipids. Biochemistry. 1981 Sep 1;20(18):5268–5275. doi: 10.1021/bi00521a027. [DOI] [PubMed] [Google Scholar]
- Katz L. C., Burkhalter A., Dreyer W. J. Fluorescent latex microspheres as a retrograde neuronal marker for in vivo and in vitro studies of visual cortex. Nature. 1984 Aug 9;310(5977):498–500. doi: 10.1038/310498a0. [DOI] [PubMed] [Google Scholar]
- Keizer K., Kuypers H. G., Huisman A. M., Dann O. Diamidino yellow dihydrochloride (DY . 2HCl); a new fluorescent retrograde neuronal tracer, which migrates only very slowly out of the cell. Exp Brain Res. 1983;51(2):179–191. doi: 10.1007/BF00237193. [DOI] [PubMed] [Google Scholar]
- Klausner R. D., Wolf D. E. Selectivity of fluorescent lipid analogues for lipid domains. Biochemistry. 1980 Dec 23;19(26):6199–6203. doi: 10.1021/bi00567a039. [DOI] [PubMed] [Google Scholar]
- Ko C. P., Burton H., Bunge R. P. Synaptic transmission between rat spinal cord explants and dissociated superior cervical ganglion neurons in tissue culture. Brain Res. 1976 Dec 3;117(3):437–460. doi: 10.1016/0006-8993(76)90752-6. [DOI] [PubMed] [Google Scholar]
- Kriegstein A. R., Dichter M. A. Morphological classification of rat cortical neurons in cell culture. J Neurosci. 1983 Aug;3(8):1634–1647. doi: 10.1523/JNEUROSCI.03-08-01634.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landmesser L. Contractile and electrical responses of vagus-innervated frog sartorius muscles. J Physiol. 1971 Mar;213(3):707–725. doi: 10.1113/jphysiol.1971.sp009410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landmesser L. The development of motor projection patterns in the chick hind limb. J Physiol. 1978 Nov;284:391–414. doi: 10.1113/jphysiol.1978.sp012546. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landmesser L. The distribution of motoneurones supplying chick hind limb muscles. J Physiol. 1978 Nov;284:371–389. doi: 10.1113/jphysiol.1978.sp012545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leifer D., Lipton S. A., Barnstable C. J., Masland R. H. Monoclonal antibody to Thy-1 enhances regeneration of processes by rat retinal ganglion cells in culture. Science. 1984 Apr 20;224(4646):303–306. doi: 10.1126/science.6143400. [DOI] [PubMed] [Google Scholar]
- Montecucco C., Pozzan T., Rink T. Dicarbocyanine fluorescent probes of membrane potential block lymphocyte capping, deplete cellular ATP and inhibit respiration of isolated mitochondria. Biochim Biophys Acta. 1979 Apr 19;552(3):552–557. doi: 10.1016/0005-2736(79)90201-3. [DOI] [PubMed] [Google Scholar]
- Mudge A. W. Schwann cells induce morphological transformation of sensory neurones in vitro. Nature. 1984 May 24;309(5966):367–369. doi: 10.1038/309367a0. [DOI] [PubMed] [Google Scholar]
- Neff N., Decker C., Horwitz A. The kinetics of myoblast fusion. Exp Cell Res. 1984 Jul;153(1):25–31. doi: 10.1016/0014-4827(84)90444-0. [DOI] [PubMed] [Google Scholar]
- Nishi R., Berg D. K. Dissociated ciliary ganglion neurons in vitro: survival and synapse formation. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5171–5175. doi: 10.1073/pnas.74.11.5171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oppenheim R. W., Heaton M. B. The retrograde transport of horseradish peroxidase from the developing limb of the chick embryo. Brain Res. 1975 Nov 14;98(2):291–302. doi: 10.1016/0006-8993(75)90007-4. [DOI] [PubMed] [Google Scholar]
- Oppenheim R. W., Maderdrut J. L., Wells D. J. Cell death of motoneurons in the chick embryo spinal cord. VI. Reduction of naturally occurring cell death in the thoracolumbar column of Terni by nerve growth factor. J Comp Neurol. 1982 Sep 10;210(2):174–189. doi: 10.1002/cne.902100208. [DOI] [PubMed] [Google Scholar]
- Pagano R. E., Sleight R. G. Defining lipid transport pathways in animal cells. Science. 1985 Sep 13;229(4718):1051–1057. doi: 10.1126/science.4035344. [DOI] [PubMed] [Google Scholar]
- Patterson P. H. Environmental determination of autonomic neurotransmitter functions. Annu Rev Neurosci. 1978;1:1–17. doi: 10.1146/annurev.ne.01.030178.000245. [DOI] [PubMed] [Google Scholar]
- Pfenninger K. H., Johnson M. P. Membrane biogenesis in the sprouting neuron. I. Selective transfer of newly synthesized phospholipid into the growing neurite. J Cell Biol. 1983 Oct;97(4):1038–1042. doi: 10.1083/jcb.97.4.1038. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfenninger K. H., Maylié-Pfenninger M. F. Lectin labeling of sprouting neurons. II. Relative movement and appearance of glycoconjugates during plasmalemmal expansion. J Cell Biol. 1981 Jun;89(3):547–559. doi: 10.1083/jcb.89.3.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simons T. J. Actions of a carbocyanine dye on calcium-dependent potassium transport in human red cell ghosts. J Physiol. 1979 Mar;288:481–507. [PMC free article] [PubMed] [Google Scholar]
- Sims P. J., Waggoner A. S., Wang C. H., Hoffman J. F. Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. Biochemistry. 1974 Jul 30;13(16):3315–3330. doi: 10.1021/bi00713a022. [DOI] [PubMed] [Google Scholar]
- Skirboll L., Hökfelt T., Norell G., Phillipson O., Kuypers H. G., Bentivoglio M., Catsman-Berrevoets C. E., Visser T. J., Steinbusch H., Verhofstad A. A method for specific transmitter identification of retrogradely labeled neurons: immunofluorescence combined with fluorescence tracing. Brain Res. 1984 Dec;320(2-3):99–127. doi: 10.1016/0165-0173(84)90001-8. [DOI] [PubMed] [Google Scholar]
- Sleight R. G., Pagano R. E. Transbilayer movement of a fluorescent phosphatidylethanolamine analogue across the plasma membranes of cultured mammalian cells. J Biol Chem. 1985 Jan 25;260(2):1146–1154. [PubMed] [Google Scholar]
- Sowers A. E. Characterization of electric field-induced fusion in erythrocyte ghost membranes. J Cell Biol. 1984 Dec;99(6):1989–1996. doi: 10.1083/jcb.99.6.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Struck D. K., Pagano R. E. Insertion of fluorescent phospholipids into the plasma membrane of a mammalian cell. J Biol Chem. 1980 Jun 10;255(11):5404–5410. [PubMed] [Google Scholar]
- Suzuki N. Anterograde fluorescent labeling of olfactory receptor neurons by Procion and Lucifer dyes. Brain Res. 1984 Oct 8;311(1):181–185. doi: 10.1016/0006-8993(84)91415-x. [DOI] [PubMed] [Google Scholar]
- Tanaka H., Obata K. Survival of HRP-labeled spinal motoneurons of chick embryo in tissue and cell cultures. Brain Res. 1983 Sep;285(3):390–395. doi: 10.1016/0165-3806(83)90037-8. [DOI] [PubMed] [Google Scholar]
- Thanos S., Bonhoeffer F. Investigations on the development and topographic order of retinotectal axons: anterograde and retrograde staining of axons and perikarya with rhodamine in vivo. J Comp Neurol. 1983 Oct 1;219(4):420–430. doi: 10.1002/cne.902190404. [DOI] [PubMed] [Google Scholar]
- Trojanowski J. Q. Native and derivatized lectins for in vivo studies of neuronal connectivity and neuronal cell biology. J Neurosci Methods. 1983 Nov;9(3):185–204. doi: 10.1016/0165-0270(83)90082-1. [DOI] [PubMed] [Google Scholar]
- Waggoner A. Optical probes of membrane potential. J Membr Biol. 1976 Jun 30;27(4):317–334. doi: 10.1007/BF01869143. [DOI] [PubMed] [Google Scholar]
- Wakade A. R., Edgar D., Thoenen H. Both nerve growth factor and high K+ concentrations support the survival of chick embryo sympathetic neurons. Evidence for a common mechanism of action. Exp Cell Res. 1983 Apr 1;144(2):377–384. doi: 10.1016/0014-4827(83)90417-2. [DOI] [PubMed] [Google Scholar]
- Wigston D. J., Sanes J. R. Selective reinnervation of intercostal muscles transplanted from different segmental levels to a common site. J Neurosci. 1985 May;5(5):1208–1221. doi: 10.1523/JNEUROSCI.05-05-01208.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolf D. E. Determination of the sidedness of carbocyanine dye labeling of membranes. Biochemistry. 1985 Jan 29;24(3):582–586. doi: 10.1021/bi00324a006. [DOI] [PubMed] [Google Scholar]
- Yoshikami D., Okun L. M. Staining of living presynaptic nerve terminals with selective fluorescent dyes. Nature. 1984 Jul 5;310(5972):53–56. doi: 10.1038/310053a0. [DOI] [PubMed] [Google Scholar]
- Zidovetzki R., Yarden Y., Schlessinger J., Jovin T. M. Rotational diffusion of epidermal growth factor complexed to cell surface receptors reflects rapid microaggregation and endocytosis of occupied receptors. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6981–6985. doi: 10.1073/pnas.78.11.6981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Laat S. W., van der Saag P. T., Elson E. L., Schlessinger J. Lateral diffusion of membrane lipids and proteins during the cell cycle of neuroblastoma cells. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1526–1528. doi: 10.1073/pnas.77.3.1526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Laat S. W., van der Saag P. T., Elson E. L., Schlessinger J. Lateral diffusion of membrane lipids and proteins is increased specifically in neurites of differentiating neuroblastoma cells. Biochim Biophys Acta. 1979 Dec 4;558(2):247–250. doi: 10.1016/0005-2736(79)90064-6. [DOI] [PubMed] [Google Scholar]