Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Jul 1;103(1):299–308. doi: 10.1083/jcb.103.1.299

Rat retinal pigment epithelial cells show specificity of phagocytosis in vitro

PMCID: PMC2113798  PMID: 3522605

Abstract

The retinal pigment epithelial (RPE) cell of the eye normally phagocytozes only retinal rod outer segments (ROS). The specificity of this phagocytic process was examined by incubating RPE cells with a variety of particle types. Confluent RPE cell cultures were incubated for 3 h at 37 degrees C in the presence of rat ROS, rat red blood cells (RBC), algae, bacteria, or yeast. Other cell cultures were incubated with equal numbers of ROS and one other particle type. Quantitative scanning electron microscopy was used to determine the numbers and morphology of particles bound to RPE cells, while double immunofluorescence labeling (Chaitin, M. H., and M. O. Hall, 1983, Invest. Ophthalmol. Vis. Sci., 24:812-820) was used to quantitate particle binding and ingestion. Both assays demonstrated phagocytosis to be a highly specific process. RPE cells bound 40-250 X more ROS than RBC, 30 X more ROS than algae, and 5 X more ROS than bacteria or yeast. Ingestion was more specific than binding; RPE cells ingested 970 X more ROS than RBC, 140 X more ROS than bacteria, and 35 X more ROS than yeast. The phagocytic preference for ROS was maintained in competition experiments with other particle types. Serum was found to be essential for phagocytosis. This study demonstrates that both the binding and ingestion phases of phagocytosis are highly specific processes.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aggeler J., Werb Z. Initial events during phagocytosis by macrophages viewed from outside and inside the cell: membrane-particle interactions and clathrin. J Cell Biol. 1982 Sep;94(3):613–623. doi: 10.1083/jcb.94.3.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Basinger S., Hoffman R., Matthes M. Photoreceptor shedding is initiated by light in the frog retina. Science. 1976 Dec 3;194(4269):1074–1076. doi: 10.1126/science.1086510. [DOI] [PubMed] [Google Scholar]
  3. Bok D., Hall M. O. The role of the pigment epithelium in the etiology of inherited retinal dystrophy in the rat. J Cell Biol. 1971 Jun;49(3):664–682. doi: 10.1083/jcb.49.3.664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bourguignon L. Y., Singer S. J. Transmembrane interactions and the mechanism of capping of surface receptors by their specific ligands. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5031–5035. doi: 10.1073/pnas.74.11.5031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bridges C. D. Lectin receptors of rods and cones. Visualization by fluorescent label. Invest Ophthalmol Vis Sci. 1981 Jan;20(1):8–16. [PubMed] [Google Scholar]
  6. Burnside B., Laties A. M. Actin filaments in apical projections of the primate pigmented epithelial cell. Invest Ophthalmol. 1976 Jul;15(7):570–575. [PubMed] [Google Scholar]
  7. Burnside M. B. Possible roles of microtubules and actin filaments in retinal pigmented epithelium. Exp Eye Res. 1976 Aug;23(2):257–275. doi: 10.1016/0014-4835(76)90208-6. [DOI] [PubMed] [Google Scholar]
  8. Chaitin M. H., Hall M. O. Defective ingestion of rod outer segments by cultured dystrophic rat pigment epithelial cells. Invest Ophthalmol Vis Sci. 1983 Jul;24(7):812–820. [PubMed] [Google Scholar]
  9. Chaitin M. H., Hall M. O. The distribution of actin in cultured normal and dystrophic rat pigment epithelial cells during the phagocytosis of rod outer segments. Invest Ophthalmol Vis Sci. 1983 Jul;24(7):821–831. [PubMed] [Google Scholar]
  10. Custer N. V., Bok D. Pigment epithelium-photoreceptor interactions in the normal and dystrophic rat retina. Exp Eye Res. 1975 Aug;21(2):153–166. doi: 10.1016/0014-4835(75)90079-2. [DOI] [PubMed] [Google Scholar]
  11. DOWLING J. E., SIDMAN R. L. Inherited retinal dystrophy in the rat. J Cell Biol. 1962 Jul;14:73–109. doi: 10.1083/jcb.14.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Edwards R. B., Szamier R. B. Defective phagocytosis of isolated rod outer segments by RCS rat retinal pigment epithelium in culture. Science. 1977 Sep 2;197(4307):1001–1003. doi: 10.1126/science.560718. [DOI] [PubMed] [Google Scholar]
  13. Feeney L., Mixon R. N. An in vitro model of phagocytosis in bovine and human retinal pigment epithelium. Exp Eye Res. 1976 May;22(5):533–548. doi: 10.1016/0014-4835(76)90190-1. [DOI] [PubMed] [Google Scholar]
  14. Funahashi M., Okisaka S., Kuwabara T. Phagocytosis by the monkey pigment epithelium. Exp Eye Res. 1976 Aug;23(2):217–225. doi: 10.1016/0014-4835(76)90205-0. [DOI] [PubMed] [Google Scholar]
  15. Godchaux W., 3rd, Zimmerman W. F. Soluble proteins of intact bovine rod cell outer segments. Exp Eye Res. 1979 Apr;28(4):483–500. doi: 10.1016/0014-4835(79)90123-4. [DOI] [PubMed] [Google Scholar]
  16. Griffin F. M., Jr, Bianco C., Silverstein S. C. Characterization of the macrophage receptro for complement and demonstration of its functional independence from the receptor for the Fc portion of immunoglobulin G. J Exp Med. 1975 Jun 1;141(6):1269–1277. doi: 10.1084/jem.141.6.1269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Griffin F. M., Jr, Griffin J. A., Leider J. E., Silverstein S. C. Studies on the mechanism of phagocytosis. I. Requirements for circumferential attachment of particle-bound ligands to specific receptors on the macrophage plasma membrane. J Exp Med. 1975 Nov 1;142(5):1263–1282. doi: 10.1084/jem.142.5.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Griffin F. M., Jr, Griffin J. A., Silverstein S. C. Studies on the mechanism of phagocytosis. II. The interaction of macrophages with anti-immunoglobulin IgG-coated bone marrow-derived lymphocytes. J Exp Med. 1976 Sep 1;144(3):788–809. doi: 10.1084/jem.144.3.788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Haley J. E., Flood M. T., Gouras P., Kjeldbye H. M. Proteins from human retinal pigment epithelial cells: evidence that a major protein is actin. Invest Ophthalmol Vis Sci. 1983 Jul;24(7):803–811. [PubMed] [Google Scholar]
  20. Hargrave P. A. The amino-terminal tryptic peptide of bovine rhodopsin. A glycopeptide containing two sites of oligosaccharide attachment. Biochim Biophys Acta. 1977 May 27;492(1):83–94. doi: 10.1016/0005-2795(77)90216-1. [DOI] [PubMed] [Google Scholar]
  21. Hartwig J. H., Davies W. A., Stossel T. P. Evidence for contractile protein translocation in macrophage spreading, phagocytosis, and phagolysosome formation. J Cell Biol. 1977 Dec;75(3):956–967. doi: 10.1083/jcb.75.3.956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hayashi M., Matsumoto A., Hamashima Y., Tsukahara I. Phagocytic activity of cultured retinal pigment epithelium. Uptake of polystyrene spheres and Staphylococcus aureus. Exp Eye Res. 1979 Apr;28(4):427–434. doi: 10.1016/0014-4835(79)90117-9. [DOI] [PubMed] [Google Scholar]
  23. Herron W. L., Riegel B. W., Myers O. E., Rubin M. L. Retinal dystrophy in the rat--a pigment epithelial disease. Invest Ophthalmol. 1969 Dec;8(6):595–604. [PubMed] [Google Scholar]
  24. Hollyfield J. G. Phagocytic capabilities of the pigment epithelium. Exp Eye Res. 1976 May;22(5):457–468. doi: 10.1016/0014-4835(76)90183-4. [DOI] [PubMed] [Google Scholar]
  25. Hollyfield J. G., Ward A. Phagocytic activity in the retinal pigment epithelium of the frog Rana pipiens. I. Uptake of polystyrene spheres. J Ultrastruct Res. 1974 Mar;46(3):327–338. doi: 10.1016/s0022-5320(74)90060-4. [DOI] [PubMed] [Google Scholar]
  26. Hollyfield J. G., Ward A. Phagocytic activity in the retinal pigment epithelium of the frog Rana pipiens. II. Exclusion of Sarcina subflava. J Ultrastruct Res. 1974 Mar;46(3):339–350. doi: 10.1016/s0022-5320(74)90061-6. [DOI] [PubMed] [Google Scholar]
  27. Kaga N., Koshibu A., Uyama M. [Electron microscopic studies on the phagocytic activity and proliferation of the retinal pigment epithelial cells (author's transl)]. Nippon Ganka Gakkai Zasshi. 1977;81(7):701–719. [PubMed] [Google Scholar]
  28. LaVail M. M. Kinetics of rod outer segment renewal in the developing mouse retina. J Cell Biol. 1973 Sep;58(3):650–661. doi: 10.1083/jcb.58.3.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. LaVail M. M. Rod outer segment disc shedding in relation to cyclic lighting. Exp Eye Res. 1976 Aug;23(2):277–280. doi: 10.1016/0014-4835(76)90209-8. [DOI] [PubMed] [Google Scholar]
  30. LaVail M. M. Rod outer segment disk shedding in rat retina: relationship to cyclic lighting. Science. 1976 Dec 3;194(4269):1071–1074. doi: 10.1126/science.982063. [DOI] [PubMed] [Google Scholar]
  31. Maupin-Szamier P., Pollard T. D. Actin filament destruction by osmium tetroxide. J Cell Biol. 1978 Jun;77(3):837–852. doi: 10.1083/jcb.77.3.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mayerson P. L., Hall M. O., Clark V., Abrams T. An improved method for isolation and culture of rat retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1985 Nov;26(11):1599–1609. [PubMed] [Google Scholar]
  33. McLaughlin B. J., Boykins L. G., Seyfried R. S. Surface-replica topography of retinal pigment epithelium during phagocytosis. Exp Eye Res. 1983 Jun;36(6):827–838. doi: 10.1016/0014-4835(83)90036-2. [DOI] [PubMed] [Google Scholar]
  34. McLaughlin B. J., Wood J. G. The localization of lectin binding sites on photoreceptor outer segments and pigment epithelium of dystrophic retinas. Invest Ophthalmol Vis Sci. 1980 Jul;19(7):728–742. [PubMed] [Google Scholar]
  35. Michl J., Ohlbaum D. J., Silverstein S. C. 2-Deoxyglucose selectively inhibits Fc and complement receptor-mediated phagocytosis in mouse peritoneal macrophages. I. Description of the inhibitory effect. J Exp Med. 1976 Dec 1;144(6):1465–1483. doi: 10.1084/jem.144.6.1465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Mullen R. J., LaVail M. M. Inherited retinal dystrophy: primary defect in pigment epithelium determined with experimental rat chimeras. Science. 1976 May 21;192(4241):799–801. doi: 10.1126/science.1265483. [DOI] [PubMed] [Google Scholar]
  37. Nir I., Hall M. O. Ultrastructural localization of lectin binding sites on the surface of retinal photoreceptors and pigment epithelium. Exp Eye Res. 1979 Aug;29(2):181–194. doi: 10.1016/0014-4835(79)90083-6. [DOI] [PubMed] [Google Scholar]
  38. Pease D. C., Nir I., Clark V., Hall M. Localization of antibody binding sites in ultrathin sections of unembedded frog retinal tissue. J Histochem Cytochem. 1983 Jan;31(1):29–34. doi: 10.1177/31.1.6187801. [DOI] [PubMed] [Google Scholar]
  39. Philp N. J., Bernstein M. H. Phagocytosis by retinal pigment epithelium explants in culture. Exp Eye Res. 1981 Jul;33(1):47–53. doi: 10.1016/s0014-4835(81)80080-2. [DOI] [PubMed] [Google Scholar]
  40. Silverstein S. C., Steinman R. M., Cohn Z. A. Endocytosis. Annu Rev Biochem. 1977;46:669–722. doi: 10.1146/annurev.bi.46.070177.003321. [DOI] [PubMed] [Google Scholar]
  41. Sung S. S., Nelson R. S., Silverstein S. C. Yeast mannans inhibit binding and phagocytosis of zymosan by mouse peritoneal macrophages. J Cell Biol. 1983 Jan;96(1):160–166. doi: 10.1083/jcb.96.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tamai M., Chader G. J. The early appearance of disc shedding in the rat retina. Invest Ophthalmol Vis Sci. 1979 Sep;18(9):913–917. [PubMed] [Google Scholar]
  43. Tamai M., O'Brien P. J. Retinal dystrophy in the RCS rat: in vivo and in vitro studies of phagocytic action of the pigment epithelium on the shed rod outer segments. Exp Eye Res. 1979 Apr;28(4):399–411. doi: 10.1016/0014-4835(79)90115-5. [DOI] [PubMed] [Google Scholar]
  44. Young R. W., Bok D. Participation of the retinal pigment epithelium in the rod outer segment renewal process. J Cell Biol. 1969 Aug;42(2):392–403. doi: 10.1083/jcb.42.2.392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Young R. W. The renewal of photoreceptor cell outer segments. J Cell Biol. 1967 Apr;33(1):61–72. doi: 10.1083/jcb.33.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES