Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Dec 1;105(6):2559–2568. doi: 10.1083/jcb.105.6.2559

Basement membrane structure in situ: evidence for lateral associations in the type IV collagen network

PMCID: PMC2114722  PMID: 3693393

Abstract

To determine molecular architecture of the type IV collagen network in situ, the human amniotic basement membrane has been studied en face in stereo relief by high resolution unidirectional metal shadow casting aided by antibody decoration and morphometry. The appearance of the intact basement membrane is that of a thin sheet in which there are regions of branching strands. Salt extraction further exposes these strands to reveal an extensive irregular polygonal network that can be specifically decorated with gold-conjugated anti-type IV collagen antibody. At high magnification one sees that the network, which contains integral (9-11 nm net diameter) globular domains, is formed in great part by lateral association of monomolecular filaments to form branching strands of variable but narrow diameters. Branch points are variably spaced apart by an average of 45 nm with 4.4 globular domains per micron of strand length. Monomolecular filaments (1.7-nm net diameter) often appear to twist around each other along the strand axis; we propose that super helix formation is an inherent characteristic of lateral assembly. A previous study (Yurchenco, P. D., and H. Furthmayr. 1984. Biochemistry. 23:1839) presented evidence that purified murine type IV collagen dimers polymerize to form polygonal arrays of laterally as well as end-domain-associated molecules. The architecture of this polymer is similar to the network seen in the amnion, with lateral binding a major contributor to each. Thus, to a first approximation, isolated type IV collagen can reconstitute in vitro the polymeric molecular architecture it assumes in vivo.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnard K., Gathercole L. J., Bailey A. J. Basement membrane collagen--evidence for a novel molecular packing. FEBS Lett. 1987 Feb 9;212(1):49–52. doi: 10.1016/0014-5793(87)81554-5. [DOI] [PubMed] [Google Scholar]
  2. Blumberg B., Fessler L. I., Kurkinen M., Fessler J. H. Biosynthesis and supramolecular assembly of procollagen IV in neonatal lung. J Cell Biol. 1986 Nov;103(5):1711–1719. doi: 10.1083/jcb.103.5.1711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bruns R. R. Supramolecular structure of polymorphic collagen fibrils. J Cell Biol. 1976 Mar;68(3):521–538. doi: 10.1083/jcb.68.3.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bruns R. R., Trelstad R. L., Gross J. Cartilage collagen: a staggered substructure in reconstituted fibrils. Science. 1973 Jul 20;181(4096):269–271. doi: 10.1126/science.181.4096.269. [DOI] [PubMed] [Google Scholar]
  5. Bächinger H. P., Fessler L. I., Fessler J. H. Mouse procollagen IV. Characterization and supramolecular association. J Biol Chem. 1982 Aug 25;257(16):9796–9803. [PubMed] [Google Scholar]
  6. Duncan K. G., Fessler L. I., Bächinger H. P., Fessler J. H. Procollagen IV. Association to tetramers. J Biol Chem. 1983 May 10;258(9):5869–5877. [PubMed] [Google Scholar]
  7. Fessler L. I., Fessler J. H. Identification of the carboxyl peptides of mouse procollagen IV and its implications for the assembly and structure of basement membrane procollagen. J Biol Chem. 1982 Aug 25;257(16):9804–9810. [PubMed] [Google Scholar]
  8. Furthmayr H., Wiedemann H., Timpl R., Odermatt E., Engel J. Electron-microscopical approach to a structural model of intima collagen. Biochem J. 1983 May 1;211(2):303–311. doi: 10.1042/bj2110303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hassell J. R., Leyshon W. C., Ledbetter S. R., Tyree B., Suzuki S., Kato M., Kimata K., Kleinman H. K. Isolation of two forms of basement membrane proteoglycans. J Biol Chem. 1985 Jul 5;260(13):8098–8105. [PubMed] [Google Scholar]
  10. Hofmann H., Voss T., Kühn K., Engel J. Localization of flexible sites in thread-like molecules from electron micrographs. Comparison of interstitial, basement membrane and intima collagens. J Mol Biol. 1984 Jan 25;172(3):325–343. doi: 10.1016/s0022-2836(84)80029-7. [DOI] [PubMed] [Google Scholar]
  11. Inoué S., Leblond C. P., Laurie G. W. Ultrastructure of Reichert's membrane, a multilayered basement membrane in the parietal wall of the rat yolk sac. J Cell Biol. 1983 Nov;97(5 Pt 1):1524–1537. doi: 10.1083/jcb.97.5.1524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Liotta L. A., Lee C. W., Morakis D. J. New method for preparing large surfaces of intact human basement membrane for tumor invasion studies. Cancer Lett. 1980 Dec;11(2):141–152. doi: 10.1016/0304-3835(80)90105-6. [DOI] [PubMed] [Google Scholar]
  13. Madri J. A., Williams S. K. Capillary endothelial cell cultures: phenotypic modulation by matrix components. J Cell Biol. 1983 Jul;97(1):153–165. doi: 10.1083/jcb.97.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Modesti A., Kalebic T., Scarpa S., Togo S., Grotendorst G., Liotta L. A., Triche T. J. Type V collagen in human amnion is a 12 nm fibrillar component of the pericellular interstitium. Eur J Cell Biol. 1984 Nov;35(2):246–255. [PubMed] [Google Scholar]
  15. Oberbäumer I., Wiedemann H., Timpl R., Kühn K. Shape and assembly of type IV procollagen obtained from cell culture. EMBO J. 1982;1(7):805–810. doi: 10.1002/j.1460-2075.1982.tb01251.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Risteli J., Bächinger H. P., Engel J., Furthmayr H., Timpl R. 7-S collagen: characterization of an unusual basement membrane structure. Eur J Biochem. 1980;108(1):239–250. doi: 10.1111/j.1432-1033.1980.tb04717.x. [DOI] [PubMed] [Google Scholar]
  17. Roll F. J., Madri J. A., Albert J., Furthmayr H. Codistribution of collagen types IV and AB2 in basement membranes and mesangium of the kidney. an immunoferritin study of ultrathin frozen sections. J Cell Biol. 1980 Jun;85(3):597–616. doi: 10.1083/jcb.85.3.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sawada H. The fine structure of the bovine Descemet's membrane with special reference to biochemical nature. Cell Tissue Res. 1982;226(2):241–255. doi: 10.1007/BF00218356. [DOI] [PubMed] [Google Scholar]
  19. Schwarz U., Schuppan D., Oberbäumer I., Glanville R. W., Deutzmann R., Timpl R., Kühn K. Structure of mouse type IV collagen. Amino-acid sequence of the C-terminal 511-residue-long triple-helical segment of the alpha 2(IV) chain and its comparison with the alpha 1(IV) chain. Eur J Biochem. 1986 May 15;157(1):49–56. doi: 10.1111/j.1432-1033.1986.tb09636.x. [DOI] [PubMed] [Google Scholar]
  20. Timpl R., Wiedemann H., van Delden V., Furthmayr H., Kühn K. A network model for the organization of type IV collagen molecules in basement membranes. Eur J Biochem. 1981 Nov;120(2):203–211. doi: 10.1111/j.1432-1033.1981.tb05690.x. [DOI] [PubMed] [Google Scholar]
  21. Tsilibary E. C., Charonis A. S. The role of the main noncollagenous domain (NC1) in type IV collagen self-assembly. J Cell Biol. 1986 Dec;103(6 Pt 1):2467–2473. doi: 10.1083/jcb.103.6.2467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yurchenco P. D., Furthmayr H. Self-assembly of basement membrane collagen. Biochemistry. 1984 Apr 10;23(8):1839–1850. doi: 10.1021/bi00303a040. [DOI] [PubMed] [Google Scholar]
  23. Yurchenco P. D., Tsilibary E. C., Charonis A. S., Furthmayr H. Models for the self-assembly of basement membrane. J Histochem Cytochem. 1986 Jan;34(1):93–102. doi: 10.1177/34.1.3510247. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES