Abstract
Assembly protein (AP) preparations from bovine brain coated vesicles have been fractionated by clathrin-Sepharose affinity chromatography. Two distinct fractions that possess coat assembly activity were obtained and are termed AP-1 and AP-2. The AP-1, not retained on the resin, has principal components with molecular weights of 108,000, 100,000, 47,000, and 19,000. The AP-2, bound to the resin and eluted by Tris-HCl at a concentration that parallels the latter's effect on coat disassembly, corresponds to the active complex described previously (Zaremba, S., and J. H. Keen, 1983, J. Cell Biol., 97:1339-1347). Its composition is similar to that of the AP-1 in that it contains 100,000- , 50,000-, and 16,000-mol-wt polypeptides in equimolar amounts; minor amounts of 112,000- and 115,000-mol-wt polypeptides are also present. Both are distinct from a recently described assembly protein of larger subunit molecular weight that we term AP-3. These results indicate the existence of a family of assembly proteins within cells. On incubation with clathrin both AP-1 and AP-2 induce the formation of coat structures, those containing AP-1 slightly smaller (mean diameter = 72 nm) than those formed in the presence of AP-2 (mean diameter = 79 nm); both structures have been detected previously in coated vesicle preparations from brain. Coats formed in the presence of AP-2 consistently contain approximately one molecule each of the 100,000-, 50,000-, and 16,000-mol-wt polypeptides per clathrin trimer. By low angle laser light scattering the molecular weight of native AP-2 was determined to be approximately 343,000, indicating that it is a dimer of each of the three subunits, and implying that it is functionally bivalent in clathrin binding. A model for AP-mediated coat assembly is proposed in which a bivalent AP-2 molecule bridges the distal legs or terminal domains of two clathrin trimers that are destined to occupy adjacent vertices in the assembled coat. Binding of a second AP-2 molecule locks these two trimers in register for assembly and further addition of AP-2 to free trimer legs promotes completion of the clathrin lattice. Effects of AP binding on the angle and flexibility of the legs at the hub of the trimer (the "pucker") are suggested to account for the characteristic size distributions of coats formed under varied conditions and, more speculatively, to contribute to the transformation of flat clathrin lattices to curved coated vesicles that are thought to occur during endocytosis.
Full Text
The Full Text of this article is available as a PDF (2.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brown M. S., Goldstein J. L. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986 Apr 4;232(4746):34–47. doi: 10.1126/science.3513311. [DOI] [PubMed] [Google Scholar]
- Crowther R. A., Finch J. T., Pearse B. M. On the structure of coated vesicles. J Mol Biol. 1976 Jun 5;103(4):785–798. doi: 10.1016/0022-2836(76)90209-6. [DOI] [PubMed] [Google Scholar]
- Heuser J., Kirchhausen T. Deep-etch views of clathrin assemblies. J Ultrastruct Res. 1985 Jul-Aug;92(1-2):1–27. doi: 10.1016/0889-1605(85)90123-5. [DOI] [PubMed] [Google Scholar]
- Heuser J. Three-dimensional visualization of coated vesicle formation in fibroblasts. J Cell Biol. 1980 Mar;84(3):560–583. doi: 10.1083/jcb.84.3.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keen J. H., Black M. M. The phosphorylation of coated membrane proteins in intact neurons. J Cell Biol. 1986 Apr;102(4):1325–1333. doi: 10.1083/jcb.102.4.1325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keen J. H., Chestnut M. H., Beck K. A. The clathrin coat assembly polypeptide complex. Autophosphorylation and assembly activities. J Biol Chem. 1987 Mar 15;262(8):3864–3871. [PubMed] [Google Scholar]
- Keen J. H., Willingham M. C., Pastan I. H. Clathrin-coated vesicles: isolation, dissociation and factor-dependent reassociation of clathrin baskets. Cell. 1979 Feb;16(2):303–312. doi: 10.1016/0092-8674(79)90007-2. [DOI] [PubMed] [Google Scholar]
- Kirchhausen T., Harrison S. C., Heuser J. Configuration of clathrin trimers: evidence from electron microscopy. J Ultrastruct Mol Struct Res. 1986 Mar;94(3):199–208. doi: 10.1016/0889-1605(86)90067-4. [DOI] [PubMed] [Google Scholar]
- Kirchhausen T., Harrison S. C. Protein organization in clathrin trimers. Cell. 1981 Mar;23(3):755–761. doi: 10.1016/0092-8674(81)90439-6. [DOI] [PubMed] [Google Scholar]
- Kuret J., Schulman H. Mechanism of autophosphorylation of the multifunctional Ca2+/calmodulin-dependent protein kinase. J Biol Chem. 1985 May 25;260(10):6427–6433. [PubMed] [Google Scholar]
- Larkin J. M., Donzell W. C., Anderson R. G. Potassium-dependent assembly of coated pits: new coated pits form as planar clathrin lattices. J Cell Biol. 1986 Dec;103(6 Pt 2):2619–2627. doi: 10.1083/jcb.103.6.2619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pearse B. M. Coated vesicles from human placenta carry ferritin, transferrin, and immunoglobulin G. Proc Natl Acad Sci U S A. 1982 Jan;79(2):451–455. doi: 10.1073/pnas.79.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pearse B. M., Robinson M. S. Purification and properties of 100-kd proteins from coated vesicles and their reconstitution with clathrin. EMBO J. 1984 Sep;3(9):1951–1957. doi: 10.1002/j.1460-2075.1984.tb02075.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prasad K., Yora T., Yano O., Lippoldt R. E., Edelhoch H., Saroff H. Purification and characterization of a molecular weight 100,000 coat protein from coated vesicles obtained from bovine brain. Biochemistry. 1986 Nov 4;25(22):6942–6947. doi: 10.1021/bi00370a030. [DOI] [PubMed] [Google Scholar]
- Robinson M. S. 100-kD coated vesicle proteins: molecular heterogeneity and intracellular distribution studied with monoclonal antibodies. J Cell Biol. 1987 Apr;104(4):887–895. doi: 10.1083/jcb.104.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothman J. E., Schmid S. L. Enzymatic recycling of clathrin from coated vesicles. Cell. 1986 Jul 4;46(1):5–9. doi: 10.1016/0092-8674(86)90852-4. [DOI] [PubMed] [Google Scholar]
- Ungewickell E. Biochemical and immunological studies on clathrin light chains and their binding sites on clathrin triskelions. EMBO J. 1983;2(8):1401–1408. doi: 10.1002/j.1460-2075.1983.tb01598.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ungewickell E., Branton D. Assembly units of clathrin coats. Nature. 1981 Jan 29;289(5796):420–422. doi: 10.1038/289420a0. [DOI] [PubMed] [Google Scholar]
- Vigers G. P., Crowther R. A., Pearse B. M. Location of the 100 kd-50 kd accessory proteins in clathrin coats. EMBO J. 1986 Sep;5(9):2079–2085. doi: 10.1002/j.1460-2075.1986.tb04469.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vigers G. P., Crowther R. A., Pearse B. M. Three-dimensional structure of clathrin cages in ice. EMBO J. 1986 Mar;5(3):529–534. doi: 10.1002/j.1460-2075.1986.tb04242.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winkler F. K., Stanley K. K. Clathrin heavy chain, light chain interactions. EMBO J. 1983;2(8):1393–1400. doi: 10.1002/j.1460-2075.1983.tb01597.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zaremba S., Keen J. H. Assembly polypeptides from coated vesicles mediate reassembly of unique clathrin coats. J Cell Biol. 1983 Nov;97(5 Pt 1):1339–1347. doi: 10.1083/jcb.97.5.1339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zaremba S., Keen J. H. Limited proteolytic digestion of coated vesicle assembly polypeptides abolishes reassembly activity. J Cell Biochem. 1985;28(1):47–58. doi: 10.1002/jcb.240280108. [DOI] [PubMed] [Google Scholar]