Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Nov 1;107(5):1977–1986. doi: 10.1083/jcb.107.5.1977

Antigenic and functional characterization of a rat central nervous system-derived cell line immortalized by a retroviral vector

PMCID: PMC2115320  PMID: 3053737

Abstract

We have immortalized rat central nervous system (CNS) cells of primary cultures of rat optic nerve with murine leukemia virus psi-2,SV-40-6, which is defective in assembly and contains the SV-40 large T antigen and neomycin resistance genes, to produce a cell line that we named A7. After drug selection, greater than 90% of the growing cells expressed nuclear SV-40 large T cells and a fraction of these contained the astrocyte-specific marker, glial fibrillary acidic protein. The majority of these cells also expressed surface marker A4 (specific for neural tube derivatives), Ran 2, p185 (the 185-kD phosphoprotein product of the neu oncogene), and fibronectin, but did not express the astrocyte enzymes glutamine synthetase and monoamine oxidase B. Surface markers characteristic of glial progenitors (A2B5) and oligodendrocytes (galactocerebroside) were not detected. After two rounds of cell cloning, subclone A7.6-3 expressed Ran 2, fibronectin, and the neural cell adhesion molecule (N-CAM) but not glial fibrillary acidic protein and A4. The A7 cell line and subclones also displayed certain functions of type 1 astrocytes: the conditioned medium of these cells had a potent mitogenic activity for glial progenitor cells which could be neutralized by anti-platelet-derived growth factor antibodies and monolayers of these cells supported the growth of embryonic hypothalamic neurons. We conclude that a retrovirus containing SV-40 large T antigen can immortalize rat CNS cells and that such immortalized glial cells retain at least two important functions of type 1 astrocytes: the ability to secrete platelet-derived growth factor and to support the growth of embryonic CNS neurons. Moreover, such stable immortalized clonal cell lines can be used to study gene regulation in glial cells.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alliot F., Pessac B. A glial fibrillary acidic protein (GFA)-containing cell clone derived from mouse cerebella transformed 'in vitro' by SV-40. Brain Res. 1981 Jul 20;216(2):455–459. doi: 10.1016/0006-8993(81)90149-9. [DOI] [PubMed] [Google Scholar]
  2. Augusti-Tocco G., Sato G. Establishment of functional clonal lines of neurons from mouse neuroblastoma. Proc Natl Acad Sci U S A. 1969 Sep;64(1):311–315. doi: 10.1073/pnas.64.1.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bartlett P. F., Noble M. D., Pruss R. M., Raff M. C., Rattray S., Williams C. A. Rat neural antigen-2 (RAN-2): a cell surface antigen on astrocytes, ependymal cells, Müller cells and lepto-meninges defined by a monoclonal antibody. Brain Res. 1981 Jan 12;204(2):339–351. doi: 10.1016/0006-8993(81)90593-x. [DOI] [PubMed] [Google Scholar]
  4. Benda P., Lightbody J., Sato G., Levine L., Sweet W. Differentiated rat glial cell strain in tissue culture. Science. 1968 Jul 26;161(3839):370–371. doi: 10.1126/science.161.3839.370. [DOI] [PubMed] [Google Scholar]
  5. Bignami A., Eng L. F., Dahl D., Uyeda C. T. Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res. 1972 Aug 25;43(2):429–435. doi: 10.1016/0006-8993(72)90398-8. [DOI] [PubMed] [Google Scholar]
  6. Bigner D. D., Bigner S. H., Pontén J., Westermark B., Mahaley M. S., Ruoslahti E., Herschman H., Eng L. F., Wikstrand C. J. Heterogeneity of Genotypic and phenotypic characteristics of fifteen permanent cell lines derived from human gliomas. J Neuropathol Exp Neurol. 1981 May;40(3):201–229. doi: 10.1097/00005072-198105000-00001. [DOI] [PubMed] [Google Scholar]
  7. Bottenstein J. E., Sato G. H. Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc Natl Acad Sci U S A. 1979 Jan;76(1):514–517. doi: 10.1073/pnas.76.1.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brockes J. P., Lemke G. E., Balzer D. R., Jr Purification and preliminary characterization of a glial growth factor from the bovine pituitary. J Biol Chem. 1980 Sep 25;255(18):8374–8377. [PubMed] [Google Scholar]
  9. Browning E. T., Nicklas W. J. Induction of glutamine synthetase by dibutyryl cyclic AMP in C-6 glioma cells. J Neurochem. 1982 Aug;39(2):336–341. doi: 10.1111/j.1471-4159.1982.tb03952.x. [DOI] [PubMed] [Google Scholar]
  10. Cepko C. L., Roberts B. E., Mulligan R. C. Construction and applications of a highly transmissible murine retrovirus shuttle vector. Cell. 1984 Jul;37(3):1053–1062. doi: 10.1016/0092-8674(84)90440-9. [DOI] [PubMed] [Google Scholar]
  11. Chuong C. M., McClain D. A., Streit P., Edelman G. M. Neural cell adhesion molecules in rodent brains isolated by monoclonal antibodies with cross-species reactivity. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4234–4238. doi: 10.1073/pnas.79.13.4234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cohen J., Selvendran S. Y. A neuronal cell-surface antigen is found in the CNS but not in peripheral neurones. Nature. 1981 Jun 4;291(5814):421–423. doi: 10.1038/291421a0. [DOI] [PubMed] [Google Scholar]
  13. Coussens L., Yang-Feng T. L., Liao Y. C., Chen E., Gray A., McGrath J., Seeburg P. H., Libermann T. A., Schlessinger J., Francke U. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science. 1985 Dec 6;230(4730):1132–1139. doi: 10.1126/science.2999974. [DOI] [PubMed] [Google Scholar]
  14. Drebin J. A., Link V. C., Stern D. F., Weinberg R. A., Greene M. I. Down-modulation of an oncogene protein product and reversion of the transformed phenotype by monoclonal antibodies. Cell. 1985 Jul;41(3):697–706. doi: 10.1016/s0092-8674(85)80050-7. [DOI] [PubMed] [Google Scholar]
  15. Drebin J. A., Stern D. F., Link V. C., Weinberg R. A., Greene M. I. Monoclonal antibodies identify a cell-surface antigen associated with an activated cellular oncogene. Nature. 1984 Dec 6;312(5994):545–548. doi: 10.1038/312545a0. [DOI] [PubMed] [Google Scholar]
  16. Eisenbarth G. S., Walsh F. S., Nirenberg M. Monoclonal antibody to a plasma membrane antigen of neurons. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4913–4917. doi: 10.1073/pnas.76.10.4913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Evrard C., Galiana E., Rouget P. Establishment of 'normal' nervous cell lines after transfer of polyoma virus and adenovirus early genes into murine brain cells. EMBO J. 1986 Dec 1;5(12):3157–3162. doi: 10.1002/j.1460-2075.1986.tb04623.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fallon J. R. Preferential outgrowth of central nervous system neurites on astrocytes and Schwann cells as compared with nonglial cells in vitro. J Cell Biol. 1985 Jan;100(1):198–207. doi: 10.1083/jcb.100.1.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Goldman J. E., Chiu F. C. Dibutyryl cyclic AMP causes intermediate filament accumulation and actin reorganization in astrocytes. Brain Res. 1984 Jul 23;306(1-2):85–95. doi: 10.1016/0006-8993(84)90358-5. [DOI] [PubMed] [Google Scholar]
  20. Jat P. S., Cepko C. L., Mulligan R. C., Sharp P. A. Recombinant retroviruses encoding simian virus 40 large T antigen and polyomavirus large and middle T antigens. Mol Cell Biol. 1986 Apr;6(4):1204–1217. doi: 10.1128/mcb.6.4.1204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kokai Y., Cohen J. A., Drebin J. A., Greene M. I. Stage- and tissue-specific expression of the neu oncogene in rat development. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8498–8501. doi: 10.1073/pnas.84.23.8498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  23. Levitt P., Pintar J. E., Breakefield X. O. Immunocytochemical demonstration of monoamine oxidase B in brain astrocytes and serotonergic neurons. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6385–6389. doi: 10.1073/pnas.79.20.6385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Major E. O., Miller A. E., Mourrain P., Traub R. G., de Widt E., Sever J. Establishment of a line of human fetal glial cells that supports JC virus multiplication. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1257–1261. doi: 10.1073/pnas.82.4.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mallat M., Moura Neto V., Gros F., Glowinski J., Prochiantz A. Two simian virus 40 (SV40)-transformed cell lines from the mouse striatum and mesencephalon presenting astrocytic characters. II. Interactions with mesencephalic neurons. Brain Res. 1986 Apr;391(1):23–31. doi: 10.1016/0165-3806(86)90004-0. [DOI] [PubMed] [Google Scholar]
  26. McCarthy K. D., de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol. 1980 Jun;85(3):890–902. doi: 10.1083/jcb.85.3.890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Miller R. H., Williams B. P., Cohen J., Raff M. C. A4: an antigenic marker of neural tube-derived cells. J Neurocytol. 1984 Jun;13(3):329–338. doi: 10.1007/BF01148326. [DOI] [PubMed] [Google Scholar]
  28. Moura Neto V., Mallat M., Chneiweiss H., Prémont J., Gros F., Prochiantz A. Two simian virus 40 (SV40)-transformed cell lines from the mouse striatum and mesencephalon presenting astrocytic characters. I. Immunological and pharmacological properties. Brain Res. 1986 Apr;391(1):11–22. doi: 10.1016/0165-3806(86)90003-9. [DOI] [PubMed] [Google Scholar]
  29. Noble M., Albrechtsen M., Møller C., Lyles J., Bock E., Goridis C., Watanabe M., Rutishauser U. Glial cells express N-CAM/D2-CAM-like polypeptides in vitro. Nature. 1985 Aug 22;316(6030):725–728. doi: 10.1038/316725a0. [DOI] [PubMed] [Google Scholar]
  30. Noble M., Fok-Seang J., Cohen J. Glia are a unique substrate for the in vitro growth of central nervous system neurons. J Neurosci. 1984 Jul;4(7):1892–1903. doi: 10.1523/JNEUROSCI.04-07-01892.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Noble M., Murray K. Purified astrocytes promote the in vitro division of a bipotential glial progenitor cell. EMBO J. 1984 Oct;3(10):2243–2247. doi: 10.1002/j.1460-2075.1984.tb02122.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Patel A. J., Hunt A., Gordon R. D., Balázs R. The activities in different neural cell types of certain enzymes associated with the metabolic compartmentation glutamate. Brain Res. 1982 May;256(1):3–11. doi: 10.1016/0165-3806(82)90091-8. [DOI] [PubMed] [Google Scholar]
  33. Pessac B., Girard A., Romey G., Crisanti P., Lorinet A. M., Calothy G. A neuronal clone derived from a Rous sarcoma virus-transformed quail embryo neuroretina established culture. Nature. 1983 Apr 14;302(5909):616–618. doi: 10.1038/302616a0. [DOI] [PubMed] [Google Scholar]
  34. Pishak M. R., Phillips A. T. Glucocorticoid stimulation of glutamine synthetase production in cultured rat glioma cells. J Neurochem. 1980 Apr;34(4):866–872. doi: 10.1111/j.1471-4159.1980.tb09659.x. [DOI] [PubMed] [Google Scholar]
  35. Price J., Hynes R. O. Astrocytes in culture synthesize and secrete a variant form of fibronectin. J Neurosci. 1985 Aug;5(8):2205–2211. doi: 10.1523/JNEUROSCI.05-08-02205.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Raff M. C., Miller R. H., Noble M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature. 1983 Jun 2;303(5916):390–396. doi: 10.1038/303390a0. [DOI] [PubMed] [Google Scholar]
  37. Raju T. R., Bignami A., Dahl D. Glial fibrillary acidic protein in monolayer cultures of C-6 glioma cells: effect of aging and dibutyryl cyclic AMP. Brain Res. 1980 Oct 27;200(1):225–230. doi: 10.1016/0006-8993(80)91114-2. [DOI] [PubMed] [Google Scholar]
  38. Ranscht B., Clapshaw P. A., Price J., Noble M., Seifert W. Development of oligodendrocytes and Schwann cells studied with a monoclonal antibody against galactocerebroside. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2709–2713. doi: 10.1073/pnas.79.8.2709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rettig W. J., Chesa P. G., Beresford H. R., Feickert H. J., Jennings M. T., Cohen J., Oettgen H. F., Old L. J. Differential expression of cell surface antigens and glial fibrillary acidic protein in human astrocytoma subsets. Cancer Res. 1986 Dec;46(12 Pt 1):6406–6412. [PubMed] [Google Scholar]
  40. Richardson W. D., Pringle N., Mosley M. J., Westermark B., Dubois-Dalcq M. A role for platelet-derived growth factor in normal gliogenesis in the central nervous system. Cell. 1988 Apr 22;53(2):309–319. doi: 10.1016/0092-8674(88)90392-3. [DOI] [PubMed] [Google Scholar]
  41. Schechter A. L., Stern D. F., Vaidyanathan L., Decker S. J., Drebin J. A., Greene M. I., Weinberg R. A. The neu oncogene: an erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature. 1984 Dec 6;312(5994):513–516. doi: 10.1038/312513a0. [DOI] [PubMed] [Google Scholar]
  42. Shih C., Padhy L. C., Murray M., Weinberg R. A. Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature. 1981 Mar 19;290(5803):261–264. doi: 10.1038/290261a0. [DOI] [PubMed] [Google Scholar]
  43. Stern D. F., Heffernan P. A., Weinberg R. A. p185, a product of the neu proto-oncogene, is a receptorlike protein associated with tyrosine kinase activity. Mol Cell Biol. 1986 May;6(5):1729–1740. doi: 10.1128/mcb.6.5.1729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tischler A. S., Greene L. A. Morphologic and cytochemical properties of a clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Lab Invest. 1978 Aug;39(2):77–89. [PubMed] [Google Scholar]
  45. Ventimiglia R., Geller H. M. Cell types and cell-substrate interactions in serum-free dissociated cultures of rat hypothalamus. Brain Res. 1987 Dec 15;436(2):339–351. doi: 10.1016/0006-8993(87)91677-5. [DOI] [PubMed] [Google Scholar]
  46. White H. L., Stine D. K. Selective effects of proteases and phospholipase A2 on monoamine oxidases A and B of human brain and liver. J Neurochem. 1984 Jun;42(6):1743–1751. doi: 10.1111/j.1471-4159.1984.tb12766.x. [DOI] [PubMed] [Google Scholar]
  47. Wood J. N., Anderton B. H. Monoclonal antibodies to mammalian neurofilaments. Biosci Rep. 1981 Mar;1(3):263–268. doi: 10.1007/BF01114913. [DOI] [PubMed] [Google Scholar]
  48. Yamamoto T., Ikawa S., Akiyama T., Semba K., Nomura N., Miyajima N., Saito T., Toyoshima K. Similarity of protein encoded by the human c-erb-B-2 gene to epidermal growth factor receptor. Nature. 1986 Jan 16;319(6050):230–234. doi: 10.1038/319230a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES