Abstract
The 200-kD subunit of neurofilaments (NF-H) functions as a cross-bridge between neurofilaments and the neuronal cytoskeleton. In this study, four phosphorylated NF-H variants were identified as major constituents of axons from a single neuron type, the retinal ganglion cell, and were shown to have characteristics with different functional implications. We resolved four major Coomassie Blue-stained proteins with apparent molecular masses of 197, 200, 205, and 210 kD on high resolution one- dimensional SDS-polyacrylamide gels of mouse optic axons (optic nerve and optic tract). Proteins with the same electrophoretic mobilities were radiolabeled within retinal ganglion cells in vivo after injecting mice intravitreally with [35S]methionine or [3H]proline. Extraction of the radiolabeled protein fraction with 1% Triton X-100 distinguished four insoluble polypeptides (P197, P200, P205, P210) with expected characteristics of NF-H from two soluble neuronal polypeptides (S197, S200) with few properties of neurofilament proteins. The four Triton- insoluble polypeptides displayed greater than 90% structural homology by two-dimensional alpha-chymotryptic iodopeptide map analysis and cross-reacted with four different monoclonal and polyclonal antibodies to NF-H by immunoblot analysis. Each of these four polypeptides advanced along axons primarily in the Group V (SCa) phase of axoplasmic transport. By contrast, the two Triton-soluble polypeptides displayed only a minor degree of alpha-chymotryptic peptide homology with the Triton-insoluble NF-H forms, did not cross-react with NF-H antibodies, and moved primarily in the Group IV (SCb) wave of axoplasmic transport. The four NF-H variants were generated by phosphorylation of a single polypeptide. Each of these polypeptides incorporated 32P when retinal ganglion cells were radiolabeled in vivo with [32P]orthophosphate and each cross-reacted with monoclonal antibodies specifically directed against phosphorylated epitopes on NF-H. When dephosphorylated in vitro with alkaline phosphatase, the four variants disappeared, giving rise to a single polypeptide with the same apparent molecular mass (160 kD) as newly synthesized, unmodified NF-H. The NF-H variants distributed differently along optic axons. P197 predominated at proximal axonal levels; P200 displayed a relatively uniform distribution; and P205 and P210 became increasingly prominent at more distal axonal levels, paralleling the distribution of the stationary neurofilament network.(ABSTRACT TRUNCATED AT 400 WORDS)
Full Text
The Full Text of this article is available as a PDF (3.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bennett G. S., DiLullo C. Slow posttranslational modification of a neurofilament protein. J Cell Biol. 1985 May;100(5):1799–1804. doi: 10.1083/jcb.100.5.1799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bignami A., Dahl D. Axonal maturation in development--II. Immunofluorescence study of rat spinal cord and cerebellum with axon-specific neurofilament antibodies. Int J Dev Neurosci. 1987;5(1):29–37. doi: 10.1016/0736-5748(87)90045-1. [DOI] [PubMed] [Google Scholar]
- Black M. M., Keyser P., Sobel E. Interval between the synthesis and assembly of cytoskeletal proteins in cultured neurons. J Neurosci. 1986 Apr;6(4):1004–1012. doi: 10.1523/JNEUROSCI.06-04-01004.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Black M. M., Lasek R. J. Slow components of axonal transport: two cytoskeletal networks. J Cell Biol. 1980 Aug;86(2):616–623. doi: 10.1083/jcb.86.2.616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown B. A., Majocha R. E., Staton D. M., Marotta C. A. Axonal polypeptides cross-reactive with antibodies to neurofilament proteins. J Neurochem. 1983 Feb;40(2):299–308. doi: 10.1111/j.1471-4159.1983.tb11283.x. [DOI] [PubMed] [Google Scholar]
- Brown B. A., Nixon R. A., Marotta C. A. Posttranslational processing of alpha-tubulin during axoplasmic transport in CNS axons. J Cell Biol. 1982 Jul;94(1):159–164. doi: 10.1083/jcb.94.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown B. A., Nixon R. A., Strocchi P., Marotta C. A. Characterization and comparison of neurofilament proteins from rat and mouse CNS. J Neurochem. 1981 Jan;36(1):143–153. doi: 10.1111/j.1471-4159.1981.tb02389.x. [DOI] [PubMed] [Google Scholar]
- Carden M. J., Schlaepfer W. W., Lee V. M. The structure, biochemical properties, and immunogenicity of neurofilament peripheral regions are determined by phosphorylation state. J Biol Chem. 1985 Aug 15;260(17):9805–9817. [PubMed] [Google Scholar]
- Chiu F. C., Norton W. T. Bulk preparation of CNS cytoskeleton and the separation of individual neurofilament proteins by gel filtration: dye-binding characteristics and amino acid compositions. J Neurochem. 1982 Nov;39(5):1252–1260. doi: 10.1111/j.1471-4159.1982.tb12562.x. [DOI] [PubMed] [Google Scholar]
- Cleveland D. W. The tubulins: from DNA to RNA to protein and back again. Cell. 1983 Sep;34(2):330–332. doi: 10.1016/0092-8674(83)90366-5. [DOI] [PubMed] [Google Scholar]
- Craig R., Padrón R., Kendrick-Jones J. Structural changes accompanying phosphorylation of tarantula muscle myosin filaments. J Cell Biol. 1987 Sep;105(3):1319–1327. doi: 10.1083/jcb.105.3.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Czosnek H., Soifer D., Wisniewski H. M. Studies on the biosynthesis of neurofilament proteins. J Cell Biol. 1980 Jun;85(3):726–734. doi: 10.1083/jcb.85.3.726. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dahl D., Crosby C. J., Gardner E. E., Bignami A. Delayed phosphorylation of the largest neurofilament protein in rat optic nerve development. J Neurosci Res. 1986;15(4):513–519. doi: 10.1002/jnr.490150408. [DOI] [PubMed] [Google Scholar]
- Dräger U. C., Edwards D. L., Barnstable C. J. Antibodies against filamentous components in discrete cell types of the mouse retina. J Neurosci. 1984 Aug;4(8):2025–2042. doi: 10.1523/JNEUROSCI.04-08-02025.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elder J. H., Pickett R. A., 2nd, Hampton J., Lerner R. A. Radioiodination of proteins in single polyacrylamide gel slices. Tryptic peptide analysis of all the major members of complex multicomponent systems using microgram quantities of total protein. J Biol Chem. 1977 Sep 25;252(18):6510–6515. [PubMed] [Google Scholar]
- Geisler N., Fischer S., Vandekerckhove J., Damme J. V., Plessmann U., Weber K. Protein-chemical characterization of NF-H, the largest mammalian neurofilament component; intermediate filament-type sequences followed by a unique carboxy-terminal extension. EMBO J. 1985 Jan;4(1):57–63. doi: 10.1002/j.1460-2075.1985.tb02317.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Georges E., Mushynski W. E. Chemical modification of charged amino acid moieties alters the electrophoretic mobilities of neurofilament subunits on SDS/polyacrylamide gels. Eur J Biochem. 1987 Jun 1;165(2):281–287. doi: 10.1111/j.1432-1033.1987.tb11439.x. [DOI] [PubMed] [Google Scholar]
- Glicksman M. A., Soppet D., Willard M. B. Posttranslational modification of neurofilament polypeptides in rabbit retina. J Neurobiol. 1987 Mar;18(2):167–196. doi: 10.1002/neu.480180205. [DOI] [PubMed] [Google Scholar]
- Goldstein M. E., Sternberger L. A., Sternberger N. H. Microheterogeneity ("neurotypy") of neurofilament proteins. Proc Natl Acad Sci U S A. 1983 May;80(10):3101–3105. doi: 10.1073/pnas.80.10.3101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein M. E., Sternberger L. A., Sternberger N. H. Varying degrees of phosphorylation determine microheterogeneity of the heavy neurofilament polypeptide (Nf-H). J Neuroimmunol. 1987 Mar;14(2):135–148. doi: 10.1016/0165-5728(87)90048-8. [DOI] [PubMed] [Google Scholar]
- Granger B. L., Lazarides E. Appearance of new variants of membrane skeletal protein 4.1 during terminal differentiation of avian erythroid and lenticular cells. Nature. 1985 Jan 17;313(5999):238–241. doi: 10.1038/313238a0. [DOI] [PubMed] [Google Scholar]
- Herrmann H., Dalton J. M., Wiche G. Microheterogeneity of microtubule-associated proteins, MAP-1 and MAP-2, and differential phosphorylation of individual subcomponents. J Biol Chem. 1985 May 10;260(9):5797–5803. [PubMed] [Google Scholar]
- Hirokawa N. Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method. J Cell Biol. 1982 Jul;94(1):129–142. doi: 10.1083/jcb.94.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirokawa N., Glicksman M. A., Willard M. B. Organization of mammalian neurofilament polypeptides within the neuronal cytoskeleton. J Cell Biol. 1984 Apr;98(4):1523–1536. doi: 10.1083/jcb.98.4.1523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffman P. N., Griffin J. W., Price D. L. Control of axonal caliber by neurofilament transport. J Cell Biol. 1984 Aug;99(2):705–714. doi: 10.1083/jcb.99.2.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffman P. N., Lasek R. J. The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J Cell Biol. 1975 Aug;66(2):351–366. doi: 10.1083/jcb.66.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huttner W. B., Schiebler W., Greengard P., De Camilli P. Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J Cell Biol. 1983 May;96(5):1374–1388. doi: 10.1083/jcb.96.5.1374. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones S. M., Williams R. C., Jr Phosphate content of mammalian neurofilaments. J Biol Chem. 1982 Sep 10;257(17):9902–9905. [PubMed] [Google Scholar]
- Julien J. P., Mushynski W. E. A comparison of in vitro- and in vivo-phosphorylated neurofilament polypeptides. J Neurochem. 1981 Dec;37(6):1579–1585. doi: 10.1111/j.1471-4159.1981.tb06330.x. [DOI] [PubMed] [Google Scholar]
- Julien J. P., Mushynski W. E. Multiple phosphorylation sites in mammalian neurofilament polypeptides. J Biol Chem. 1982 Sep 10;257(17):10467–10470. [PubMed] [Google Scholar]
- Julien J. P., Mushynski W. E. The distribution of phosphorylation sites among identified proteolytic fragments of mammalian neurofilaments. J Biol Chem. 1983 Mar 25;258(6):4019–4025. [PubMed] [Google Scholar]
- Julien J. P., Smoluk G. D., Mushynski W. E. Characteristics of the protein kinase activity associated with rat neurofilament preparations. Biochim Biophys Acta. 1983 Jan 4;755(1):25–31. doi: 10.1016/0304-4165(83)90268-4. [DOI] [PubMed] [Google Scholar]
- Kaufmann E., Geisler N., Weber K. SDS-PAGE strongly overestimates the molecular masses of the neurofilament proteins. FEBS Lett. 1984 May 7;170(1):81–84. doi: 10.1016/0014-5793(84)81373-3. [DOI] [PubMed] [Google Scholar]
- Kotani S., Murofushi H., Maekawa S., Aizawa H., Sakai H. Isolation of rat liver microtubule-associated proteins. Evidence for a family of microtubule-associated proteins with molecular mass of around 200,000 which distribute widely among mammalian cells. J Biol Chem. 1988 Apr 15;263(11):5385–5389. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
- Lazarides E. Intermediate filaments: a chemically heterogeneous, developmentally regulated class of proteins. Annu Rev Biochem. 1982;51:219–250. doi: 10.1146/annurev.bi.51.070182.001251. [DOI] [PubMed] [Google Scholar]
- Lazarides E., Nelson W. J. Erythrocyte and brain forms of spectrin in cerebellum: distinct membrane-cytoskeletal domains in neurons. Science. 1983 Jun 17;220(4603):1295–1296. doi: 10.1126/science.6190228. [DOI] [PubMed] [Google Scholar]
- Lee V. M., Carden M. J., Schlaepfer W. W., Trojanowski J. Q. Monoclonal antibodies distinguish several differentially phosphorylated states of the two largest rat neurofilament subunits (NF-H and NF-M) and demonstrate their existence in the normal nervous system of adult rats. J Neurosci. 1987 Nov;7(11):3474–3488. doi: 10.1523/JNEUROSCI.07-11-03474.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee V. M., Carden M. J., Trojanowski J. Q. Novel monoclonal antibodies provide evidence for the in situ existence of a nonphosphorylated form of the largest neurofilament subunit. J Neurosci. 1986 Mar;6(3):850–858. doi: 10.1523/JNEUROSCI.06-03-00850.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leterrier J. F., Liem R. K., Shelanski M. L. Preferential phosphorylation of the 150,000 molecular weight component of neurofilaments by a cyclic AMP-dependent, microtubule-associated protein kinase. J Cell Biol. 1981 Sep;90(3):755–760. doi: 10.1083/jcb.90.3.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewis S. A., Lee M. G., Cowan N. J. Five mouse tubulin isotypes and their regulated expression during development. J Cell Biol. 1985 Sep;101(3):852–861. doi: 10.1083/jcb.101.3.852. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lu P. W., Soong C. J., Tao M. Phosphorylation of ankyrin decreases its affinity for spectrin tetramer. J Biol Chem. 1985 Dec 5;260(28):14958–14964. [PubMed] [Google Scholar]
- Malik M. N., Fenko M. D., Scotto L., Merz P., Rothman J., Tuzio H., Wisniewski H. M. Purification and characterization of myosin from calf brain. J Neurochem. 1983 Jun;40(6):1620–1629. doi: 10.1111/j.1471-4159.1983.tb08135.x. [DOI] [PubMed] [Google Scholar]
- Marotta C. A., Harris J. L., Gilbert J. M. Characterization of multiple forms of brain tubulin subunits. J Neurochem. 1978 Jun;30(6):1431–1440. doi: 10.1111/j.1471-4159.1978.tb10475.x. [DOI] [PubMed] [Google Scholar]
- Marotta C. A., Strocchi P., Gilbert J. M. Microheterogeneity of brain cytoplasmic and synaptoplasmic actins. J Neurochem. 1978 Jun;30(6):1441–1451. doi: 10.1111/j.1471-4159.1978.tb10476.x. [DOI] [PubMed] [Google Scholar]
- Matus A., Riederer B. Microtubule-associated proteins in the developing brain. Ann N Y Acad Sci. 1986;466:167–179. doi: 10.1111/j.1749-6632.1986.tb38393.x. [DOI] [PubMed] [Google Scholar]
- Morris J. R., Lasek R. J. Stable polymers of the axonal cytoskeleton: the axoplasmic ghost. J Cell Biol. 1982 Jan;92(1):192–198. doi: 10.1083/jcb.92.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murthy A. S., Flavin M. Microtubule assembly using the microtubule-associated protein MAP-2 prepared in defined states of phosphorylation with protein kinase and phosphatase. Eur J Biochem. 1983 Dec 1;137(1-2):37–46. doi: 10.1111/j.1432-1033.1983.tb07792.x. [DOI] [PubMed] [Google Scholar]
- Nelson W. J., Lazarides E. The patterns of expression of two ankyrin isoforms demonstrate distinct steps in the assembly of the membrane skeleton in neuronal morphogenesis. Cell. 1984 Dec;39(2 Pt 1):309–320. doi: 10.1016/0092-8674(84)90009-6. [DOI] [PubMed] [Google Scholar]
- Nixon R. A., Brown B. A., Marotta C. A. Limited proteolytic modification of a neurofilament protein involves a proteinase activated by endogenous levels of calcium. Brain Res. 1983 Sep 26;275(2):384–388. doi: 10.1016/0006-8993(83)91003-x. [DOI] [PubMed] [Google Scholar]
- Nixon R. A., Brown B. A., Marotta C. A. Posttranslational modification of a neurofilament protein during axoplasmic transport: implications for regional specialization of CNS axons. J Cell Biol. 1982 Jul;94(1):150–158. doi: 10.1083/jcb.94.1.150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nixon R. A. Increased axonal proteolysis in myelin-deficient mutant mice. Science. 1982 Feb 19;215(4535):999–1001. doi: 10.1126/science.7156980. [DOI] [PubMed] [Google Scholar]
- Nixon R. A., Lewis S. E. Differential turnover of phosphate groups on neurofilament subunits in mammalian neurons in vivo. J Biol Chem. 1986 Dec 15;261(35):16298–16301. [PubMed] [Google Scholar]
- Nixon R. A., Lewis S. E., Marotta C. A. Posttranslational modification of neurofilament proteins by phosphate during axoplasmic transport in retinal ganglion cell neurons. J Neurosci. 1987 Apr;7(4):1145–1158. doi: 10.1523/JNEUROSCI.07-04-01145.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nixon R. A., Logvinenko K. B. Multiple fates of newly synthesized neurofilament proteins: evidence for a stationary neurofilament network distributed nonuniformly along axons of retinal ganglion cell neurons. J Cell Biol. 1986 Feb;102(2):647–659. doi: 10.1083/jcb.102.2.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nixon R. A. Protein degradation in the mouse visual system. I. Degradation of axonally transported and retinal proteins. Brain Res. 1980 Oct 27;200(1):69–83. doi: 10.1016/0006-8993(80)91095-1. [DOI] [PubMed] [Google Scholar]
- Nixon R. A., Quackenbush R., Vitto A. Multiple calcium-activated neutral proteinases (CANP) in mouse retinal ganglion cell neurons: specificities for endogenous neuronal substrates and comparison to purified brain CANP. J Neurosci. 1986 May;6(5):1252–1263. doi: 10.1523/JNEUROSCI.06-05-01252.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nunez J. Differential expression of microtubule components during brain development. Dev Neurosci. 1986;8(3):125–141. doi: 10.1159/000112248. [DOI] [PubMed] [Google Scholar]
- Oblinger M. M. Characterization of posttranslational processing of the mammalian high-molecular-weight neurofilament protein in vivo. J Neurosci. 1987 Aug;7(8):2510–2521. [PMC free article] [PubMed] [Google Scholar]
- Olmsted J. B. Microtubule-associated proteins. Annu Rev Cell Biol. 1986;2:421–457. doi: 10.1146/annurev.cb.02.110186.002225. [DOI] [PubMed] [Google Scholar]
- Pachter J. S., Liem R. K. The differential appearance of neurofilament triplet polypeptides in the developing rat optic nerve. Dev Biol. 1984 May;103(1):200–210. doi: 10.1016/0012-1606(84)90021-6. [DOI] [PubMed] [Google Scholar]
- Pruss R. M., Mirsky R., Raff M. C., Thorpe R., Dowding A. J., Anderton B. H. All classes of intermediate filaments share a common antigenic determinant defined by a monoclonal antibody. Cell. 1981 Dec;27(3 Pt 2):419–428. doi: 10.1016/0092-8674(81)90383-4. [DOI] [PubMed] [Google Scholar]
- Raybin D., Flavin M. Modification of tubulin by tyrosylation in cells and extracts and its effect on assembly in vitro. J Cell Biol. 1977 May;73(2):492–504. doi: 10.1083/jcb.73.2.492. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Selden S. C., Pollard T. D. Phosphorylation of microtubule-associated proteins regulates their interaction with actin filaments. J Biol Chem. 1983 Jun 10;258(11):7064–7071. [PubMed] [Google Scholar]
- Sharp G. A., Shaw G., Weber K. Immunoelectronmicroscopical localization of the three neurofilament triplet proteins along neurofilaments of cultured dorsal root ganglion neurones. Exp Cell Res. 1982 Feb;137(2):403–413. doi: 10.1016/0014-4827(82)90042-8. [DOI] [PubMed] [Google Scholar]
- Shea T. B., Sihag R. K., Nixon R. A. Neurofilament triplet proteins of NB2a/d1 neuroblastoma: posttranslational modification and incorporation into the cytoskeleton during differentiation. Brain Res. 1988 Sep 1;471(1):97–109. doi: 10.1016/0165-3806(88)90155-1. [DOI] [PubMed] [Google Scholar]
- Shecket G., Lasek R. J. Neurofilament protein phosphorylation. Species generality and reaction characteristics. J Biol Chem. 1982 May 10;257(9):4788–4795. [PubMed] [Google Scholar]
- Shelanski M. L., Liem R. K. Neurofilaments. J Neurochem. 1979 Jul;33(1):5–13. doi: 10.1111/j.1471-4159.1979.tb11699.x. [DOI] [PubMed] [Google Scholar]
- Sternberger L. A., Sternberger N. H. Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci U S A. 1983 Oct;80(19):6126–6130. doi: 10.1073/pnas.80.19.6126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strocchi P., Dahl D., Gilbert J. M. Studies on the biosynthesis of intermediate filament proteins in the rat CNS. J Neurochem. 1982 Oct;39(4):1132–1141. doi: 10.1111/j.1471-4159.1982.tb11506.x. [DOI] [PubMed] [Google Scholar]
- Trojanowski J. Q., Walkenstein N., Lee V. M. Expression of neurofilament subunits in neurons of the central and peripheral nervous system: an immunohistochemical study with monoclonal antibodies. J Neurosci. 1986 Mar;6(3):650–660. doi: 10.1523/JNEUROSCI.06-03-00650.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber K., Shaw G., Osborn M., Debus E., Geisler N. Neurofilaments, a subclass of intermediate filaments: structure and expression. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):717–729. doi: 10.1101/sqb.1983.048.01.075. [DOI] [PubMed] [Google Scholar]
- Willard M. B. Genetically determined protein polymorphism in the rabbit nervous system. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3641–3645. doi: 10.1073/pnas.73.10.3641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willard M., Simon C. Antibody decoration of neurofilaments. J Cell Biol. 1981 May;89(2):198–205. doi: 10.1083/jcb.89.2.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willard M., Simon C. Modulations of neurofilament axonal transport during the development of rabbit retinal ganglion cells. Cell. 1983 Dec;35(2 Pt 1):551–559. doi: 10.1016/0092-8674(83)90189-7. [DOI] [PubMed] [Google Scholar]
- Zagon I. S., Higbee R., Riederer B. M., Goodman S. R. Spectrin subtypes in mammalian brain: an immunoelectron microscopic study. J Neurosci. 1986 Oct;6(10):2977–2986. doi: 10.1523/JNEUROSCI.06-10-02977.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]