Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Oct 1;111(4):1661–1671. doi: 10.1083/jcb.111.4.1661

Functional reconstitutional of the human epidermal growth factor receptor system in Xenopus oocytes

PMCID: PMC2116234  PMID: 1976639

Abstract

We have expressed the human EGF receptor (hEGF-R) in Xenopus oocytes by injecting mRNA synthesized in vitro using SP6 vectors containing receptor cDNAs. Each oocyte could express over 1 x 10(10) receptors of a single affinity class and these were able to bind and rapidly internalize EGF. Occupancy resulted in receptor tyrosine autophosphorylation, downregulation, and release of intracellular calcium. Occupied receptors also rapidly induced meiotic maturation in stage VI oocytes. Receptors lacking tyrosine kinase activity bound EGF normally, but did not downregulate or induce any biological responses. The rate of oocyte maturation was proportional to hEGF-R occupancy and was significantly faster than progesterone-induced maturation at nanomolar EGF concentrations. Mutant hEGF-R truncated at residue 973 displayed identical phenotypes in both mammalian cells and oocytes in that they were defective in their ability to release intracellular calcium, undergo ligand induced internalization and receptor downregulation. However, these receptors were fully capable of inducing oocyte maturation. The remarkable retention of specific biological activities of different hEGF-R in the context of oocytes suggests that this receptor system interacts with generally available cellular components that have been conserved during evolution. In addition, it suggests that cell surface tyrosine kinase activity may play an important role in regulating resumption of the cell cycle.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arion D., Meijer L., Brizuela L., Beach D. cdc2 is a component of the M phase-specific histone H1 kinase: evidence for identity with MPF. Cell. 1988 Oct 21;55(2):371–378. doi: 10.1016/0092-8674(88)90060-8. [DOI] [PubMed] [Google Scholar]
  2. Birchmeier C., Broek D., Wigler M. ras proteins can induce meiosis in Xenopus oocytes. Cell. 1985 Dec;43(3 Pt 2):615–621. doi: 10.1016/0092-8674(85)90233-8. [DOI] [PubMed] [Google Scholar]
  3. Carpenter G. Epidermal growth factor: biology and receptor metabolism. J Cell Sci Suppl. 1985;3:1–9. doi: 10.1242/jcs.1985.supplement_3.1. [DOI] [PubMed] [Google Scholar]
  4. Carpenter G., Lembach K. J., Morrison M. M., Cohen S. Characterization of the binding of 125-I-labeled epidermal growth factor to human fibroblasts. J Biol Chem. 1975 Jun 10;250(11):4297–4304. [PubMed] [Google Scholar]
  5. Chen W. S., Lazar C. S., Lund K. A., Welsh J. B., Chang C. P., Walton G. M., Der C. J., Wiley H. S., Gill G. N., Rosenfeld M. G. Functional independence of the epidermal growth factor receptor from a domain required for ligand-induced internalization and calcium regulation. Cell. 1989 Oct 6;59(1):33–43. doi: 10.1016/0092-8674(89)90867-2. [DOI] [PubMed] [Google Scholar]
  6. Chen W. S., Lazar C. S., Poenie M., Tsien R. Y., Gill G. N., Rosenfeld M. G. Requirement for intrinsic protein tyrosine kinase in the immediate and late actions of the EGF receptor. 1987 Aug 27-Sep 2Nature. 328(6133):820–823. doi: 10.1038/328820a0. [DOI] [PubMed] [Google Scholar]
  7. Cicirelli M. F., Pelech S. L., Krebs E. G. Insulin and progesterone activate a common synthetic ribosomal protein S6 peptide kinase in Xenopus oocytes. FEBS Lett. 1988 Dec 5;241(1-2):195–201. doi: 10.1016/0014-5793(88)81060-3. [DOI] [PubMed] [Google Scholar]
  8. Cohen S. The receptor for epidermal growth factor functions as a tyrosyl-specific kinase. Prog Nucleic Acid Res Mol Biol. 1983;29:245–247. doi: 10.1016/s0079-6603(08)60452-3. [DOI] [PubMed] [Google Scholar]
  9. Cork R. J., Cicirelli M. F., Robinson K. R. A rise in cytosolic calcium is not necessary for maturation of Xenopus laevis oocytes. Dev Biol. 1987 May;121(1):41–47. doi: 10.1016/0012-1606(87)90136-9. [DOI] [PubMed] [Google Scholar]
  10. Dawid I. B., Sargent T. D. Xenopus laevis in developmental and molecular biology. Science. 1988 Jun 10;240(4858):1443–1448. doi: 10.1126/science.3287620. [DOI] [PubMed] [Google Scholar]
  11. Defize L. H., Boonstra J., Meisenhelder J., Kruijer W., Tertoolen L. G., Tilly B. C., Hunter T., van Bergen en Henegouwen P. M., Moolenaar W. H., de Laat S. W. Signal transduction by epidermal growth factor occurs through the subclass of high affinity receptors. J Cell Biol. 1989 Nov;109(5):2495–2507. doi: 10.1083/jcb.109.5.2495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Downward J., Parker P., Waterfield M. D. Autophosphorylation sites on the epidermal growth factor receptor. Nature. 1984 Oct 4;311(5985):483–485. doi: 10.1038/311483a0. [DOI] [PubMed] [Google Scholar]
  13. Draetta G., Luca F., Westendorf J., Brizuela L., Ruderman J., Beach D. Cdc2 protein kinase is complexed with both cyclin A and B: evidence for proteolytic inactivation of MPF. Cell. 1989 Mar 10;56(5):829–838. doi: 10.1016/0092-8674(89)90687-9. [DOI] [PubMed] [Google Scholar]
  14. Draetta G., Piwnica-Worms H., Morrison D., Druker B., Roberts T., Beach D. Human cdc2 protein kinase is a major cell-cycle regulated tyrosine kinase substrate. Nature. 1988 Dec 22;336(6201):738–744. doi: 10.1038/336738a0. [DOI] [PubMed] [Google Scholar]
  15. Dunphy W. G., Brizuela L., Beach D., Newport J. The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis. Cell. 1988 Jul 29;54(3):423–431. doi: 10.1016/0092-8674(88)90205-x. [DOI] [PubMed] [Google Scholar]
  16. Dunphy W. G., Newport J. W. Fission yeast p13 blocks mitotic activation and tyrosine dephosphorylation of the Xenopus cdc2 protein kinase. Cell. 1989 Jul 14;58(1):181–191. doi: 10.1016/0092-8674(89)90414-5. [DOI] [PubMed] [Google Scholar]
  17. Gautier J., Matsukawa T., Nurse P., Maller J. Dephosphorylation and activation of Xenopus p34cdc2 protein kinase during the cell cycle. Nature. 1989 Jun 22;339(6226):626–629. doi: 10.1038/339626a0. [DOI] [PubMed] [Google Scholar]
  18. Gautier J., Norbury C., Lohka M., Nurse P., Maller J. Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2+. Cell. 1988 Jul 29;54(3):433–439. doi: 10.1016/0092-8674(88)90206-1. [DOI] [PubMed] [Google Scholar]
  19. Gill G. N., Kawamoto T., Cochet C., Le A., Sato J. D., Masui H., McLeod C., Mendelsohn J. Monoclonal anti-epidermal growth factor receptor antibodies which are inhibitors of epidermal growth factor binding and antagonists of epidermal growth factor binding and antagonists of epidermal growth factor-stimulated tyrosine protein kinase activity. J Biol Chem. 1984 Jun 25;259(12):7755–7760. [PubMed] [Google Scholar]
  20. Glenney J. R., Jr, Chen W. S., Lazar C. S., Walton G. M., Zokas L. M., Rosenfeld M. G., Gill G. N. Ligand-induced endocytosis of the EGF receptor is blocked by mutational inactivation and by microinjection of anti-phosphotyrosine antibodies. Cell. 1988 Mar 11;52(5):675–684. doi: 10.1016/0092-8674(88)90405-9. [DOI] [PubMed] [Google Scholar]
  21. Haigler H. T., McKanna J. A., Cohen S. Direct visualization of the binding and internalization of a ferritin conjugate of epidermal growth factor in human carcinoma cells A-431. J Cell Biol. 1979 May;81(2):382–395. doi: 10.1083/jcb.81.2.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hirai S., Le Goascogne C., Baulieu E. E. Induction of germinal vesicle breakdown in Xenopus laevis oocytes: response of denuded oocytes to progesterone and insulin. Dev Biol. 1983 Nov;100(1):214–221. doi: 10.1016/0012-1606(83)90213-0. [DOI] [PubMed] [Google Scholar]
  23. Huchon D., Ozon R., Fischer E. H., Demaille J. G. The pure inhibitor of cAMP-dependent protein kinase initiates Xenopus laevis meiotic maturation. A 4-step scheme for meiotic maturation. Mol Cell Endocrinol. 1981 May;22(2):211–222. doi: 10.1016/0303-7207(81)90092-7. [DOI] [PubMed] [Google Scholar]
  24. Knauer D. J., Wiley H. S., Cunningham D. D. Relationship between epidermal growth factor receptor occupancy and mitogenic response. Quantitative analysis using a steady state model system. J Biol Chem. 1984 May 10;259(9):5623–5631. [PubMed] [Google Scholar]
  25. Krieg P. A., Melton D. A. In vitro RNA synthesis with SP6 RNA polymerase. Methods Enzymol. 1987;155:397–415. doi: 10.1016/0076-6879(87)55027-3. [DOI] [PubMed] [Google Scholar]
  26. Labbe J. C., Picard A., Peaucellier G., Cavadore J. C., Nurse P., Doree M. Purification of MPF from starfish: identification as the H1 histone kinase p34cdc2 and a possible mechanism for its periodic activation. Cell. 1989 Apr 21;57(2):253–263. doi: 10.1016/0092-8674(89)90963-x. [DOI] [PubMed] [Google Scholar]
  27. Labbé J. C., Picard A., Karsenti E., Dorée M. An M-phase-specific protein kinase of Xenopus oocytes: partial purification and possible mechanism of its periodic activation. Dev Biol. 1988 May;127(1):157–169. doi: 10.1016/0012-1606(88)90197-2. [DOI] [PubMed] [Google Scholar]
  28. Le Goascogne C., Hirai S., Baulieu E. E. Induction of germinal vesicle breakdown in Xenopus laevis oocytes: synergistic action of progesterone and insulin. J Endocrinol. 1984 Apr;101(1):7–12. doi: 10.1677/joe.0.1010007. [DOI] [PubMed] [Google Scholar]
  29. Lin C. R., Chen W. S., Lazar C. S., Carpenter C. D., Gill G. N., Evans R. M., Rosenfeld M. G. Protein kinase C phosphorylation at Thr 654 of the unoccupied EGF receptor and EGF binding regulate functional receptor loss by independent mechanisms. Cell. 1986 Mar 28;44(6):839–848. doi: 10.1016/0092-8674(86)90006-1. [DOI] [PubMed] [Google Scholar]
  30. Maller J. L., Koontz J. W. A study of the induction of cell division in amphibian oocytes by insulin. Dev Biol. 1981 Jul 30;85(2):309–316. doi: 10.1016/0012-1606(81)90262-1. [DOI] [PubMed] [Google Scholar]
  31. Maller J. Oocyte maturation in amphibians and the regulation of meiosis and mitosis. Prog Clin Biol Res. 1988;267:259–274. [PubMed] [Google Scholar]
  32. Morgan D. O., Ho L., Korn L. J., Roth R. A. Insulin action is blocked by a monoclonal antibody that inhibits the insulin receptor kinase. Proc Natl Acad Sci U S A. 1986 Jan;83(2):328–332. doi: 10.1073/pnas.83.2.328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Morla A. O., Draetta G., Beach D., Wang J. Y. Reversible tyrosine phosphorylation of cdc2: dephosphorylation accompanies activation during entry into mitosis. Cell. 1989 Jul 14;58(1):193–203. doi: 10.1016/0092-8674(89)90415-7. [DOI] [PubMed] [Google Scholar]
  34. Opresko L. K., Karpf R. A. Specific proteolysis regulates fusion between endocytic compartments in Xenopus oocytes. Cell. 1987 Nov 20;51(4):557–568. doi: 10.1016/0092-8674(87)90125-5. [DOI] [PubMed] [Google Scholar]
  35. Opresko L. K., Wiley H. S. Receptor-mediated endocytosis in Xenopus oocytes. I. Characterization of the vitellogenin receptor system. J Biol Chem. 1987 Mar 25;262(9):4109–4115. [PubMed] [Google Scholar]
  36. Opresko L. K., Wiley H. S. Receptor-mediated endocytosis in Xenopus oocytes. II. Evidence for two novel mechanisms of hormonal regulation. J Biol Chem. 1987 Mar 25;262(9):4116–4123. [PubMed] [Google Scholar]
  37. Opresko L., Wiley H. S., Wallace R. A. Proteins iodinated by the chloramine-T method appear to be degraded at an abnormally rapid rate after endocytosis. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1556–1560. doi: 10.1073/pnas.77.3.1556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Reynhout J. K., Taddei C., Smith L. D., LaMarca M. J. Response of large oocytes of Xenopus laevis to progesterone in vitro in relation to oocyte size and time after previous HCG-induced ovulation. Dev Biol. 1975 Jun;44(2):375–379. doi: 10.1016/0012-1606(75)90408-x. [DOI] [PubMed] [Google Scholar]
  39. Sawyer S. T., Cohen S. Enhancement of calcium uptake and phosphatidylinositol turnover by epidermal growth factor in A-431 cells. Biochemistry. 1981 Oct 13;20(21):6280–6286. doi: 10.1021/bi00524a057. [DOI] [PubMed] [Google Scholar]
  40. Sehgal A., Wall D. A., Chao M. V. Efficient processing and expression of human nerve growth factor receptors in Xenopus laevis oocytes: effects on maturation. Mol Cell Biol. 1988 May;8(5):2242–2246. doi: 10.1128/mcb.8.5.2242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Simanis V., Hayles J., Nurse P. Control over the onset of DNA synthesis in fission yeast. Philos Trans R Soc Lond B Biol Sci. 1987 Dec 15;317(1187):507–516. doi: 10.1098/rstb.1987.0077. [DOI] [PubMed] [Google Scholar]
  42. Simmen F. A., Schulz T. Z., Headon D. R., Wright D. A., Carpenter G., O'Malley B. W. Translation in Xenopus oocytes of messenger RNA from A431 cells for human epidermal growth factor receptor proteins. DNA. 1984 Oct;3(5):393–399. doi: 10.1089/dna.1984.3.393. [DOI] [PubMed] [Google Scholar]
  43. Smith L. D., Ecker R. E. The interaction of steroids with Rana pipiens Oocytes in the induction of maturation. Dev Biol. 1971 Jun;25(2):232–247. doi: 10.1016/0012-1606(71)90029-7. [DOI] [PubMed] [Google Scholar]
  44. Smith L. D. The induction of oocyte maturation: transmembrane signaling events and regulation of the cell cycle. Development. 1989 Dec;107(4):685–699. doi: 10.1242/dev.107.4.685. [DOI] [PubMed] [Google Scholar]
  45. Soderquist A. M., Stoscheck C., Carpenter G. Similarities in glycosylation and transport between the secreted and plasma membrane forms of the epidermal growth factor receptor in A-431 cells. J Cell Physiol. 1988 Sep;136(3):447–454. doi: 10.1002/jcp.1041360308. [DOI] [PubMed] [Google Scholar]
  46. Spivack J. G., Erikson R. L., Maller J. L. Microinjection of pp60v-src into Xenopus oocytes increases phosphorylation of ribosomal protein S6 and accelerates the rate of progesterone-induced meiotic maturation. Mol Cell Biol. 1984 Aug;4(8):1631–1634. doi: 10.1128/mcb.4.8.1631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Taylor M. A., Smith L. D. Induction of maturation in small Xenopus laevis oocytes. Dev Biol. 1987 May;121(1):111–118. doi: 10.1016/0012-1606(87)90144-8. [DOI] [PubMed] [Google Scholar]
  48. Wallace R. A., Jared D. W., Dumont J. N., Sega M. W. Protein incorporation by isolated amphibian oocytes. 3. Optimum incubation conditions. J Exp Zool. 1973 Jun;184(3):321–333. doi: 10.1002/jez.1401840305. [DOI] [PubMed] [Google Scholar]
  49. Wallace R. A., Misulovin Z. Long-term growth and differentiation of Xenopus oocytes in a defined medium. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5534–5538. doi: 10.1073/pnas.75.11.5534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Wallace R. A., Misulovin Z. The role of zinc and follicle cells in insulin-initiated meiotic maturation of Xenopus laevis oocytes. Science. 1980 Nov 21;210(4472):928–930. doi: 10.1126/science.7001631. [DOI] [PubMed] [Google Scholar]
  51. Wallace R. A., Misulovin Z., Wiley H. S. Growth of anuran oocytes in serum-supplemented medium. Reprod Nutr Dev. 1980;20(3A):699–708. doi: 10.1051/rnd:19800412. [DOI] [PubMed] [Google Scholar]
  52. Wasserman W. J., Houle J. G., Samuel D. The maturation response of stage IV, V, and VI Xenopus oocytes to progesterone stimulation in vitro. Dev Biol. 1984 Oct;105(2):315–324. doi: 10.1016/0012-1606(84)90288-4. [DOI] [PubMed] [Google Scholar]
  53. Wasserman W. J., Masui Y. Effects of cyclohexamide on a cytoplasmic factor initiating meiotic naturation in Xenopus oocytes. Exp Cell Res. 1975 Mar 15;91(2):381–388. doi: 10.1016/0014-4827(75)90118-4. [DOI] [PubMed] [Google Scholar]
  54. Wasserman W. J., Masui Y. Initiation of meiotic maturation in Xenopus laevis oocytes by the combination of divalent cations and ionophore A23187. J Exp Zool. 1975 Sep;193(3):369–375. doi: 10.1002/jez.1401930313. [DOI] [PubMed] [Google Scholar]
  55. Wiley H. S. Anomalous binding of epidermal growth factor to A431 cells is due to the effect of high receptor densities and a saturable endocytic system. J Cell Biol. 1988 Aug;107(2):801–810. doi: 10.1083/jcb.107.2.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Wiley H. S., Cunningham D. D. A steady state model for analyzing the cellular binding, internalization and degradation of polypeptide ligands. Cell. 1981 Aug;25(2):433–440. doi: 10.1016/0092-8674(81)90061-1. [DOI] [PubMed] [Google Scholar]
  57. Wiley H. S., Cunningham D. D. The endocytotic rate constant. A cellular parameter for quantitating receptor-mediated endocytosis. J Biol Chem. 1982 Apr 25;257(8):4222–4229. [PubMed] [Google Scholar]
  58. Wiley H. S., Walsh B. J., Lund K. A. Global modulation of the epidermal growth factor receptor is triggered by occupancy of only a few receptors. Evidence for a binary regulatory system in normal human fibroblasts. J Biol Chem. 1989 Nov 15;264(32):18912–18920. [PubMed] [Google Scholar]
  59. Wolffe A. P., Bersimbaev R. I., Tata J. R. Inhibition by estradiol of binding and mitogenic effect of epidermal growth factor in primary cultures of Xenopus hepatocytes. Mol Cell Endocrinol. 1985 May;40(2-3):167–173. doi: 10.1016/0303-7207(85)90172-8. [DOI] [PubMed] [Google Scholar]
  60. Womack F. C., Colowick S. P. Rapid measurement of binding of ligands by rate of dialysis. Methods Enzymol. 1973;27:464–471. doi: 10.1016/s0076-6879(73)27020-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES