Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Aug 1;122(3):703–712. doi: 10.1083/jcb.122.3.703

Cell proliferation, extracellular matrix mineralization, and ovotransferrin transient expression during in vitro differentiation of chick hypertrophic chondrocytes into osteoblast-like cells

PMCID: PMC2119661  PMID: 8393014

Abstract

Differentiation of hypertrophic chondrocytes toward an osteoblast-like phenotype occurs in vitro when cells are transferred to anchorage- dependent culture conditions in the presence of ascorbic acid (Descalzi Cancedda, F., C. Gentili, P. Manduca, and R. Cancedda. 1992. J. Cell Biol. 117:427-435). This process is enhanced by retinoic acid addition to the culture medium. Here we compare the growth of hypertrophic chondrocytes undergoing this differentiation process to the growth of hypertrophic chondrocytes maintained in suspension culture as such. The proliferation rate is significantly higher in the adherent hypertrophic chondrocytes differentiating to osteoblast-like cells. In cultures supplemented with retinoic acid the proliferation rate is further increased. In both cases cells stop proliferating when mineralization of the extracellular matrix begins. We also report on the ultrastructural organization of the osteoblast-like cell cultures and we show virtual identity with cultures of osteoblasts grown from bone chips. Cells are embedded in a dense meshwork of type I collagen fibers and mineral is observed in the extracellular matrix associated with collagen fibrils. Differentiating hypertrophic chondrocytes secrete large amounts of an 82-kD glycoprotein. The protein has been purified from conditioned medium and identified as ovotransferrin. It is transiently expressed during the in vitro differentiation of hypertrophic chondrocytes into osteoblast-like cells. In cultured hypertrophic chondrocytes treated with 500 nM retinoic acid, ovotransferrin is maximally expressed 3 d after retinoic acid addition, when the cartilage-bone-specific collagen shift occurs, and decays between the 5th and the 10th day, when cells have fully acquired the osteoblast-like phenotype. Similar results were obtained when retinoic acid was added to the culture at the 50 nM "physiological" concentration. Cells expressing ovotransferrin also coexpress ovotransferrin receptors. This suggests an autocrine mechanism in the control of chondrocyte differentiation to osteoblast-like cells.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bianco P., Fisher L. W., Young M. F., Termine J. D., Robey P. G. Expression of bone sialoprotein (BSP) in developing human tissues. Calcif Tissue Int. 1991 Dec;49(6):421–426. doi: 10.1007/BF02555854. [DOI] [PubMed] [Google Scholar]
  2. Bonatti S., Cancedda F. D. Posttranslational modifications of Sindbis virus glycoproteins: electrophoretic analysis of pulse-chase-labeled infected cells. J Virol. 1982 Apr;42(1):64–70. doi: 10.1128/jvi.42.1.64-70.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cancedda F. D., Dozin B., Rossi F., Molina F., Cancedda R., Negri A., Ronchi S. The Ch21 protein, developmentally regulated in chick embryo, belongs to the superfamily of lipophilic molecule carrier proteins. J Biol Chem. 1990 Nov 5;265(31):19060–19064. [PubMed] [Google Scholar]
  4. Castagnola P., Bet P., Quarto R., Gennari M., Cancedda R. cDNA cloning and gene expression of chicken osteopontin. Expression of osteopontin mRNA in chondrocytes is enhanced by trypsin treatment of cells. J Biol Chem. 1991 May 25;266(15):9944–9949. [PubMed] [Google Scholar]
  5. Castagnola P., Moro G., Descalzi-Cancedda F., Cancedda R. Type X collagen synthesis during in vitro development of chick embryo tibial chondrocytes. J Cell Biol. 1986 Jun;102(6):2310–2317. doi: 10.1083/jcb.102.6.2310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chan L. N., Gerhardt E. M. Transferrin receptor gene is hyperexpressed and transcriptionally regulated in differentiating erythroid cells. J Biol Chem. 1992 Apr 25;267(12):8254–8259. [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. Crichton R. R., Charloteaux-Wauters M. Iron transport and storage. Eur J Biochem. 1987 May 4;164(3):485–506. doi: 10.1111/j.1432-1033.1987.tb11155.x. [DOI] [PubMed] [Google Scholar]
  9. Descalzi Cancedda F., Gentili C., Manduca P., Cancedda R. Hypertrophic chondrocytes undergo further differentiation in culture. J Cell Biol. 1992 Apr;117(2):427–435. doi: 10.1083/jcb.117.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Descalzi Cancedda F., Manduca P., Tacchetti C., Fossa P., Quarto R., Cancedda R. Developmentally regulated synthesis of a low molecular weight protein (Ch 21) by differentiating chondrocytes. J Cell Biol. 1988 Dec;107(6 Pt 1):2455–2463. doi: 10.1083/jcb.107.6.2455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ekblom P., Thesleff I. Control of kidney differentiation by soluble factors secreted by the embryonic liver and the yolk sac. Dev Biol. 1985 Jul;110(1):29–38. doi: 10.1016/0012-1606(85)90060-0. [DOI] [PubMed] [Google Scholar]
  12. Ekblom P., Thesleff I., Saxén L., Miettinen A., Timpl R. Transferrin as a fetal growth factor: acquisition of responsiveness related to embryonic induction. Proc Natl Acad Sci U S A. 1983 May;80(9):2651–2655. doi: 10.1073/pnas.80.9.2651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Franzen A., Oldberg A., Solursh M. Possible recruitment of osteoblastic precursor cells from hypertrophic chondrocytes during initial osteogenesis in cartilaginous limbs of young rats. Matrix. 1989 Aug;9(4):261–265. doi: 10.1016/s0934-8832(89)80001-0. [DOI] [PubMed] [Google Scholar]
  14. Fuernkranz H. A., Schwob J. E., Lucas J. J. Differential tissue localization of oviduct and erythroid transferrin receptors. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7505–7508. doi: 10.1073/pnas.88.17.7505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gerstenfeld L. C., Chipman S. D., Glowacki J., Lian J. B. Expression of differentiated function by mineralizing cultures of chicken osteoblasts. Dev Biol. 1987 Jul;122(1):49–60. doi: 10.1016/0012-1606(87)90331-9. [DOI] [PubMed] [Google Scholar]
  16. Gerstenfeld L. C., Chipman S. D., Kelly C. M., Hodgens K. J., Lee D. D., Landis W. J. Collagen expression, ultrastructural assembly, and mineralization in cultures of chicken embryo osteoblasts. J Cell Biol. 1988 Mar;106(3):979–989. doi: 10.1083/jcb.106.3.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gerstenfeld L. C., Landis W. J. Gene expression and extracellular matrix ultrastructure of a mineralizing chondrocyte cell culture system. J Cell Biol. 1991 Feb;112(3):501–513. doi: 10.1083/jcb.112.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hamm G. H., Cameron G. N. The EMBL data library. Nucleic Acids Res. 1986 Jan 10;14(1):5–9. doi: 10.1093/nar/14.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Horton W. A., Hood O. J., Machado M. A., Ahmed S., Griffey E. S. Abnormal ossification in thanatophoric dysplasia. Bone. 1988;9(1):53–61. doi: 10.1016/8756-3282(88)90027-0. [DOI] [PubMed] [Google Scholar]
  20. Hugly S., Griswold M. Regulation of levels of specific Sertoli cell mRNAs by vitamin A. Dev Biol. 1987 Jun;121(2):316–324. doi: 10.1016/0012-1606(87)90167-9. [DOI] [PubMed] [Google Scholar]
  21. Jeltsch J. M., Chambon P. The complete nucleotide sequence of the chicken ovotransferrin mRNA. Eur J Biochem. 1982 Feb;122(2):291–295. doi: 10.1111/j.1432-1033.1982.tb05879.x. [DOI] [PubMed] [Google Scholar]
  22. Kiffmeyer W. R., Tomusk E. V., Mescher A. L. Axonal transport and release of transferrin in nerves of regenerating amphibian limbs. Dev Biol. 1991 Oct;147(2):392–402. doi: 10.1016/0012-1606(91)90297-g. [DOI] [PubMed] [Google Scholar]
  23. Manduca P., Descalzi Cancedda F., Cancedda R. Chondrogenic differentiation in chick embryo osteoblast cultures. Eur J Cell Biol. 1992 Apr;57(2):193–201. [PubMed] [Google Scholar]
  24. Mark M. P., Butler W. T., Prince C. W., Finkelman R. D., Ruch J. V. Developmental expression of 44-kDa bone phosphoprotein (osteopontin) and bone gamma-carboxyglutamic acid (Gla)-containing protein (osteocalcin) in calcifying tissues of rat. Differentiation. 1988;37(2):123–136. doi: 10.1111/j.1432-0436.1988.tb00804.x. [DOI] [PubMed] [Google Scholar]
  25. Metsäranta M., Young M. F., Sandberg M., Termine J., Vuorio E. Localization of osteonectin expression in human fetal skeletal tissues by in situ hybridization. Calcif Tissue Int. 1989 Sep;45(3):146–152. doi: 10.1007/BF02556057. [DOI] [PubMed] [Google Scholar]
  26. O'Neill C., Jordan P., Ireland G. Evidence for two distinct mechanisms of anchorage stimulation in freshly explanted and 3T3 Swiss mouse fibroblasts. Cell. 1986 Feb 14;44(3):489–496. doi: 10.1016/0092-8674(86)90470-8. [DOI] [PubMed] [Google Scholar]
  27. Oettinger H. F., Pacifici M. Type X collagen gene expression is transiently up-regulated by retinoic acid treatment in chick chondrocyte cultures. Exp Cell Res. 1990 Dec;191(2):292–298. doi: 10.1016/0014-4827(90)90017-5. [DOI] [PubMed] [Google Scholar]
  28. Owen T. A., Aronow M., Shalhoub V., Barone L. M., Wilming L., Tassinari M. S., Kennedy M. B., Pockwinse S., Lian J. B., Stein G. S. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol. 1990 Jun;143(3):420–430. doi: 10.1002/jcp.1041430304. [DOI] [PubMed] [Google Scholar]
  29. Pacifici M., Golden E. B., Iwamoto M., Adams S. L. Retinoic acid treatment induces type X collagen gene expression in cultured chick chondrocytes. Exp Cell Res. 1991 Jul;195(1):38–46. doi: 10.1016/0014-4827(91)90497-i. [DOI] [PubMed] [Google Scholar]
  30. Pacifici M., Golden E. B., Oshima O., Shapiro I. M., Leboy P. S., Adams S. L. Hypertrophic chondrocytes. The terminal stage of differentiation in the chondrogenic cell lineage? Ann N Y Acad Sci. 1990;599:45–57. doi: 10.1111/j.1749-6632.1990.tb42363.x. [DOI] [PubMed] [Google Scholar]
  31. Pacifici M., Oshima O., Fisher L. W., Young M. F., Shapiro I. M., Leboy P. S. Changes in osteonectin distribution and levels are associated with mineralization of the chicken tibial growth cartilage. Calcif Tissue Int. 1990 Jul;47(1):51–61. doi: 10.1007/BF02555866. [DOI] [PubMed] [Google Scholar]
  32. Partanen A. M., Thesleff I., Ekblom P. Transferrin is required for early tooth morphogenesis. Differentiation. 1984;27(1):59–66. doi: 10.1111/j.1432-0436.1984.tb01408.x. [DOI] [PubMed] [Google Scholar]
  33. Quarto R., Dozin B., Tacchetti C., Campanile G., Malfatto C., Cancedda R. In vitro development of hypertrophic chondrocytes starting from selected clones of dedifferentiated cells. J Cell Biol. 1990 Apr;110(4):1379–1386. doi: 10.1083/jcb.110.4.1379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Richman J. M., Diewert V. M. The fate of Meckel's cartilage chondrocytes in ocular culture. Dev Biol. 1988 Sep;129(1):48–60. doi: 10.1016/0012-1606(88)90160-1. [DOI] [PubMed] [Google Scholar]
  35. Roach H. I., Shearer J. R. Cartilage resorption and endochondral bone formation during the development of long bones in chick embryos. Bone Miner. 1989 Jul;6(3):289–309. doi: 10.1016/0169-6009(89)90035-4. [DOI] [PubMed] [Google Scholar]
  36. Ruch J. V., Lesot H., Karcher-Djuricic V., Meyer J. M., Olive M. Facts and hypotheses concerning the control of odontoblast differentiation. Differentiation. 1982;21(1):7–12. doi: 10.1111/j.1432-0436.1982.tb01187.x. [DOI] [PubMed] [Google Scholar]
  37. Saxén L., Salonen J., Ekblom P., Nordling S. DNA synthesis and cell generation cycle during determination and differentiation of the metanephric mesenchyme. Dev Biol. 1983 Jul;98(1):130–138. doi: 10.1016/0012-1606(83)90341-x. [DOI] [PubMed] [Google Scholar]
  38. Strauss P. G., Closs E. I., Schmidt J., Erfle V. Gene expression during osteogenic differentiation in mandibular condyles in vitro. J Cell Biol. 1990 Apr;110(4):1369–1378. doi: 10.1083/jcb.110.4.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Thaller C., Eichele G. Identification and spatial distribution of retinoids in the developing chick limb bud. Nature. 1987 Jun 18;327(6123):625–628. doi: 10.1038/327625a0. [DOI] [PubMed] [Google Scholar]
  40. Thesingh C. W., Groot C. G., Wassenaar A. M. Transdifferentiation of hypertrophic chondrocytes into osteoblasts in murine fetal metatarsal bones, induced by co-cultured cerebrum. Bone Miner. 1991 Jan;12(1):25–40. doi: 10.1016/0169-6009(91)90119-k. [DOI] [PubMed] [Google Scholar]
  41. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yamamoto T., Sobel M. E., Adams S. L., Avvedimento V. E., DiLauro R., Pastan I., de Crombrugghe B., Showalter A., Pesciotta D., Fietzek P. Construction of a recombinant bacterial plasmid containing pro-alpha 1(I) collagen DNA sequences. J Biol Chem. 1980 Mar 25;255(6):2612–2615. [PubMed] [Google Scholar]
  43. Yoshioka C., Yagi T. Electron microscopic observations on the fate of hypertrophic chondrocytes in condylar cartilage of rat mandible. J Craniofac Genet Dev Biol. 1988;8(3):253–264. [PubMed] [Google Scholar]
  44. de Jong G., van Dijk J. P., van Eijk H. G. The biology of transferrin. Clin Chim Acta. 1990 Sep;190(1-2):1–46. doi: 10.1016/0009-8981(90)90278-z. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES