Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1994 Apr 1;125(1):171–182. doi: 10.1083/jcb.125.1.171

Uroplakins Ia and Ib, two major differentiation products of bladder epithelium, belong to a family of four transmembrane domain (4TM) proteins

PMCID: PMC2120008  PMID: 8138569

Abstract

The mammalian bladder epithelium elaborates, as a terminal differentiation product, a specialized plasma membrane called asymmetric unit membrane (AUM) which is believed to play a role in strengthening and stabilizing the urothelial apical surface through its interactions with an underlying cytoskeleton. Previous studies indicate that the outer leaflet of AUM is composed of crystalline patches of 12- nm protein particles, and that bovine AUMs contain three major proteins: the 27- to 28-kD uroplakin I, the 15-kD uroplakin II and the 47-kD uroplakin III. As a step towards elucidating the AUM structure and function, we have cloned the cDNAs of bovine uroplakin I (UPI). Our results established the existence of two isoforms of bovine uroplakin I: a 27-kD uroplakin Ia and a 28-kD uroplakin Ib. These two glycoproteins are closely related with 39% identity in their amino acid sequences. Hydropathy plot revealed that both have four potential transmembrane domains (TMDs) with connecting loops of similar length. Proteolytic digestion of UPIa inserted in vitro into microsomal vesicles suggested that its two main hydrophilic loops are exposed to the luminal space, possibly involved in interacting with the luminal domains of other uroplakins to form the 12-nm protein particles. The larger loop connecting TMD3 and TMD4 of both UPIa and UPIb contains six highly conserved cysteine residues; at least one centrally located cysteine doublet in UPIa is involved in forming intramolecular disulfide bridges. The sequences of UPIa and UPIb (the latter is almost identical to a hypothetical, TGF beta-inducible, TI-1 protein of mink lung epithelial cells) are homologous to members of a recently described family all possessing four transmembrane domains (the "4TM family"); members of this family include many important leukocyte differentiation markers such as CD9, CD37, CD53, and CD63. The tissue- specific and differentiation-dependent expression as well as the naturally occurring crystalline state of uroplakin I molecules make them uniquely suitable, as prototype members of the 4TM family, for studying the structure and function of these integral membrane proteins.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amiot M. Identification and analysis of cDNA clones encoding CD53. A pan-leukocyte antigen related to membrane transport proteins. J Immunol. 1990 Dec 15;145(12):4322–4325. [PubMed] [Google Scholar]
  2. Bascom R. A., Manara S., Collins L., Molday R. S., Kalnins V. I., McInnes R. R. Cloning of the cDNA for a novel photoreceptor membrane protein (rom-1) identifies a disk rim protein family implicated in human retinopathies. Neuron. 1992 Jun;8(6):1171–1184. doi: 10.1016/0896-6273(92)90137-3. [DOI] [PubMed] [Google Scholar]
  3. Bascom R. A., Schappert K., McInnes R. R. Cloning of the human and murine ROM1 genes: genomic organization and sequence conservation. Hum Mol Genet. 1993 Apr;2(4):385–391. doi: 10.1093/hmg/2.4.385. [DOI] [PubMed] [Google Scholar]
  4. Boucheix C., Benoit P., Frachet P., Billard M., Worthington R. E., Gagnon J., Uzan G. Molecular cloning of the CD9 antigen. A new family of cell surface proteins. J Biol Chem. 1991 Jan 5;266(1):117–122. [PubMed] [Google Scholar]
  5. Bradbury L. E., Kansas G. S., Levy S., Evans R. L., Tedder T. F. The CD19/CD21 signal transducing complex of human B lymphocytes includes the target of antiproliferative antibody-1 and Leu-13 molecules. J Immunol. 1992 Nov 1;149(9):2841–2850. [PubMed] [Google Scholar]
  6. Brisson A., Wade R. H. Three-dimensional structure of luminal plasma membrane protein from urinary bladder. J Mol Biol. 1983 May 5;166(1):21–36. doi: 10.1016/s0022-2836(83)80048-5. [DOI] [PubMed] [Google Scholar]
  7. Caruthers J. S., Bonneville M. A. Isolation and characterization of the urothelial lumenal plasma membrane. J Cell Biol. 1977 May;73(2):382–399. doi: 10.1083/jcb.73.2.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Classon B. J., Williams A. F., Willis A. C., Seed B., Stamenkovic I. The primary structure of the human leukocyte antigen CD37, a species homologue of the rat MRC OX-44 antigen. J Exp Med. 1990 Sep 1;172(3):1007–1007. doi: 10.1084/jem.172.3.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Davern K. M., Wright M. D., Herrmann V. R., Mitchell G. F. Further characterisation of the Schistosoma japonicum protein Sj23, a target antigen of an immunodiagnostic monoclonal antibody. Mol Biochem Parasitol. 1991 Sep;48(1):67–75. doi: 10.1016/0166-6851(91)90165-3. [DOI] [PubMed] [Google Scholar]
  10. Eichner R., Bonitz P., Sun T. T. Classification of epidermal keratins according to their immunoreactivity, isoelectric point, and mode of expression. J Cell Biol. 1984 Apr;98(4):1388–1396. doi: 10.1083/jcb.98.4.1388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Emi N., Kitaori K., Seto M., Ueda R., Saito H., Takahashi T. Isolation of a novel cDNA clone showing marked similarity to ME491/CD63 superfamily. Immunogenetics. 1993;37(3):193–198. doi: 10.1007/BF00191884. [DOI] [PubMed] [Google Scholar]
  12. Frohman M. A., Dush M. K., Martin G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8998–9002. doi: 10.1073/pnas.85.23.8998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gaugitsch H. W., Hofer E., Huber N. E., Schnabl E., Baumruker T. A new superfamily of lymphoid and melanoma cell proteins with extensive homology to Schistosoma mansoni antigen Sm23. Eur J Immunol. 1991 Feb;21(2):377–383. doi: 10.1002/eji.1830210219. [DOI] [PubMed] [Google Scholar]
  14. Hicks R. M., Ketterer B. Hexagonal lattice of subunits in the thick luminal membrane of the rat urinary bladder. Nature. 1969 Dec 27;224(5226):1304–1305. doi: 10.1038/2241304a0. [DOI] [PubMed] [Google Scholar]
  15. Hicks R. M., Ketterer B. Isolation of the plasma membrane of the luminal surface of rat bladder epithelium, and the occurrence of a hexagonal lattice of subunits both in negatively stained whole mounts and in sectioned membranes. J Cell Biol. 1970 Jun;45(3):542–553. doi: 10.1083/jcb.45.3.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hicks R. M. The fine structure of the transitional epithelium of rat ureter. J Cell Biol. 1965 Jul;26(1):25–48. doi: 10.1083/jcb.26.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hicks R. M. The mammalian urinary bladder: an accommodating organ. Biol Rev Camb Philos Soc. 1975 May;50(2):215–246. doi: 10.1111/j.1469-185x.1975.tb01057.x. [DOI] [PubMed] [Google Scholar]
  18. Hotta H., Ross A. H., Huebner K., Isobe M., Wendeborn S., Chao M. V., Ricciardi R. P., Tsujimoto Y., Croce C. M., Koprowski H. Molecular cloning and characterization of an antigen associated with early stages of melanoma tumor progression. Cancer Res. 1988 Jun 1;48(11):2955–2962. [PubMed] [Google Scholar]
  19. Kallin B., de Martin R., Etzold T., Sorrentino V., Philipson L. Cloning of a growth arrest-specific and transforming growth factor beta-regulated gene, TI 1, from an epithelial cell line. Mol Cell Biol. 1991 Oct;11(10):5338–5345. doi: 10.1128/mcb.11.10.5338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ketterer B., Hicks R. M., Christodoulides L., Beale D. Studies of the chemistry of the luminal plasma membrane of rat bladder epithelial cells. Biochim Biophys Acta. 1973 Jun 22;311(2):180–190. doi: 10.1016/0005-2736(73)90265-4. [DOI] [PubMed] [Google Scholar]
  21. Knutton S., Robertson J. D. Regular structures in membranes: the lumenal plasma membrane of the cow urinary bladder. J Cell Sci. 1976 Nov;22(2):355–370. doi: 10.1242/jcs.22.2.355. [DOI] [PubMed] [Google Scholar]
  22. Koss L. G. The asymmetric unit membranes of the epithelium of the urinary bladder of the rat. An electron microscopic study of a mechanism of epithelial maturation and function. Lab Invest. 1969 Aug;21(2):154–168. [PubMed] [Google Scholar]
  23. Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 1984 Jan 25;12(2):857–872. doi: 10.1093/nar/12.2.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  25. Lanza F., Wolf D., Fox C. F., Kieffer N., Seyer J. M., Fried V. A., Coughlin S. R., Phillips D. R., Jennings L. K. cDNA cloning and expression of platelet p24/CD9. Evidence for a new family of multiple membrane-spanning proteins. J Biol Chem. 1991 Jun 5;266(16):10638–10645. [PubMed] [Google Scholar]
  26. Levy S., Nguyen V. Q., Andria M. L., Takahashi S. Structure and membrane topology of TAPA-1. J Biol Chem. 1991 Aug 5;266(22):14597–14602. [PubMed] [Google Scholar]
  27. Lewis S. A., de Moura J. L. Apical membrane area of rabbit urinary bladder increases by fusion of intracellular vesicles: an electrophysiological study. J Membr Biol. 1984;82(2):123–136. doi: 10.1007/BF01868937. [DOI] [PubMed] [Google Scholar]
  28. Lin J. H., Wu X. R., Kreibich G., Sun T. T. Precursor sequence, processing, and urothelium-specific expression of a major 15-kDa protein subunit of asymmetric unit membrane. J Biol Chem. 1994 Jan 21;269(3):1775–1784. [PubMed] [Google Scholar]
  29. Masellis-Smith A., Jensen G. S., Seehafer J. G., Slupsky J. R., Shaw A. R. Anti-CD9 monoclonal antibodies induce homotypic adhesion of pre-B cell lines by a novel mechanism. J Immunol. 1990 Mar 1;144(5):1607–1613. [PubMed] [Google Scholar]
  30. Metzelaar M. J., Wijngaard P. L., Peters P. J., Sixma J. J., Nieuwenhuis H. K., Clevers H. C. CD63 antigen. A novel lysosomal membrane glycoprotein, cloned by a screening procedure for intracellular antigens in eukaryotic cells. J Biol Chem. 1991 Feb 15;266(5):3239–3245. [PubMed] [Google Scholar]
  31. Minsky B. D., Chlapowski F. J. Morphometric analysis of the translocation of lumenal membrane between cytoplasm and cell surface of transitional epithelial cells during the expansion-contraction cycles of mammalian urinary bladder. J Cell Biol. 1978 Jun;77(3):685–697. doi: 10.1083/jcb.77.3.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mitamura T., Iwamoto R., Umata T., Yomo T., Urabe I., Tsuneoka M., Mekada E. The 27-kD diphtheria toxin receptor-associated protein (DRAP27) from vero cells is the monkey homologue of human CD9 antigen: expression of DRAP27 elevates the number of diphtheria toxin receptors on toxin-sensitive cells. J Cell Biol. 1992 Sep;118(6):1389–1399. doi: 10.1083/jcb.118.6.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nishikata H., Oliver C., Mergenhagen S. E., Siraganian R. P. The rat mast cell antigen AD1 (homologue to human CD63 or melanoma antigen ME491) is expressed in other cells in culture. J Immunol. 1992 Aug 1;149(3):862–870. [PubMed] [Google Scholar]
  34. Oligino L. D., Percy A. J., Harn D. A. Purification and immunochemical characterization of a 22 kilodalton surface antigen from Schistosoma mansoni. Mol Biochem Parasitol. 1988 Mar;28(2):95–103. doi: 10.1016/0166-6851(88)90056-4. [DOI] [PubMed] [Google Scholar]
  35. Oren R., Takahashi S., Doss C., Levy R., Levy S. TAPA-1, the target of an antiproliferative antibody, defines a new family of transmembrane proteins. Mol Cell Biol. 1990 Aug;10(8):4007–4015. doi: 10.1128/mcb.10.8.4007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Paul D. L. Molecular cloning of cDNA for rat liver gap junction protein. J Cell Biol. 1986 Jul;103(1):123–134. doi: 10.1083/jcb.103.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Porter K. R., Kenyon K., Badenhausen S. Specializations of the unit membrane. Protoplasma. 1967;63(1):262–274. [PubMed] [Google Scholar]
  39. Robertson J. D., Vergara J. Analysis of the structure of intramembrane particles of the mammalian urinary bladder. J Cell Biol. 1980 Aug;86(2):514–528. doi: 10.1083/jcb.86.2.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Ryan A. M., Womack J. E., Yu J., Lin J. H., Wu X. R., Sun T. T., Clarke V., D'Eustachio P. Chromosomal localization of uroplakin genes of cattle and mice. Mamm Genome. 1993 Nov;4(11):656–661. doi: 10.1007/BF00360903. [DOI] [PubMed] [Google Scholar]
  41. Sarikas S. N., Chlapowski F. J. Effect of ATP inhibitors on the translocation of luminal membrane between cytoplasm and cell surface of transitional epithelial cells during the expansion-contraction cycle of the rat urinary bladder. Cell Tissue Res. 1986;246(1):109–117. doi: 10.1007/BF00219006. [DOI] [PubMed] [Google Scholar]
  42. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  43. Staehelin L. A., Chlapowski F. J., Bonneville M. A. Lumenal plasma membrane of the urinary bladder. I. Three-dimensional reconstruction from freeze-etch images. J Cell Biol. 1972 Apr;53(1):73–91. doi: 10.1083/jcb.53.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Stubbs C. D., Ketterer B., Hicks R. M. The isolation and analysis of the luminal plasma membrane of calf urinary bladder epithelium. Biochim Biophys Acta. 1979 Nov 16;558(1):58–72. doi: 10.1016/0005-2736(79)90315-8. [DOI] [PubMed] [Google Scholar]
  45. Surya B., Yu J., Manabe M., Sun T. T. Assessing the differentiation state of cultured bovine urothelial cells: elevated synthesis of stratification-related K5 and K6 keratins and persistent expression of uroplakin I. J Cell Sci. 1990 Nov;97(Pt 3):419–432. doi: 10.1242/jcs.97.3.419. [DOI] [PubMed] [Google Scholar]
  46. Szala S., Kasai Y., Steplewski Z., Rodeck U., Koprowski H., Linnenbach A. J. Molecular cloning of cDNA for the human tumor-associated antigen CO-029 and identification of related transmembrane antigens. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6833–6837. doi: 10.1073/pnas.87.17.6833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Takahashi S., Doss C., Levy S., Levy R. TAPA-1, the target of an antiproliferative antibody, is associated on the cell surface with the Leu-13 antigen. J Immunol. 1990 Oct 1;145(7):2207–2213. [PubMed] [Google Scholar]
  48. Taylor K. A., Robertson J. D. Analysis of the three-dimensional structure of the urinary bladder epithelial cell membranes. J Ultrastruct Res. 1984 Apr;87(1):23–30. doi: 10.1016/s0022-5320(84)90113-8. [DOI] [PubMed] [Google Scholar]
  49. Tomlinson M. G., Williams A. F., Wright M. D. Epitope mapping of anti-rat CD53 monoclonal antibodies. Implications for the membrane orientation of the Transmembrane 4 Superfamily. Eur J Immunol. 1993 Jan;23(1):136–140. doi: 10.1002/eji.1830230122. [DOI] [PubMed] [Google Scholar]
  50. Travis G. H., Christerson L., Danielson P. E., Klisak I., Sparkes R. S., Hahn L. B., Dryja T. P., Sutcliffe J. G. The human retinal degeneration slow (RDS) gene: chromosome assignment and structure of the mRNA. Genomics. 1991 Jul;10(3):733–739. doi: 10.1016/0888-7543(91)90457-p. [DOI] [PubMed] [Google Scholar]
  51. Vergara J., Longley W., Robertson J. D. A hexagonal arrangement of subunits in membrane of mouse urinary bladder. J Mol Biol. 1969 Dec 28;46(3):593–596. doi: 10.1016/0022-2836(69)90200-9. [DOI] [PubMed] [Google Scholar]
  52. Vergara J., Zambrano F., Robertson J. D., Elrod H. Isolation and characterization of luminal membranes from urinary bladder. J Cell Biol. 1974 Apr;61(1):83–94. doi: 10.1083/jcb.61.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Wright M. D., Henkle K. J., Mitchell G. F. An immunogenic Mr 23,000 integral membrane protein of Schistosoma mansoni worms that closely resembles a human tumor-associated antigen. J Immunol. 1990 Apr 15;144(8):3195–3200. [PubMed] [Google Scholar]
  54. Wright M. D., Rochelle J. M., Tomlinson M. G., Seldin M. F., Williams A. F. Gene structure, chromosomal localization, and protein sequence of mouse CD53 (Cd53): evidence that the transmembrane 4 superfamily arose by gene duplication. Int Immunol. 1993 Feb;5(2):209–216. doi: 10.1093/intimm/5.2.209. [DOI] [PubMed] [Google Scholar]
  55. Wu X. R., Manabe M., Yu J., Sun T. T. Large scale purification and immunolocalization of bovine uroplakins I, II, and III. Molecular markers of urothelial differentiation. J Biol Chem. 1990 Nov 5;265(31):19170–19179. [PubMed] [Google Scholar]
  56. Wu X. R., Sun T. T. Molecular cloning of a 47 kDa tissue-specific and differentiation-dependent urothelial cell surface glycoprotein. J Cell Sci. 1993 Sep;106(Pt 1):31–43. doi: 10.1242/jcs.106.1.31. [DOI] [PubMed] [Google Scholar]
  57. Yu J., Manabe M., Sun T. T. Identification of an 85-100 kDa glycoprotein as a cell surface marker for an advanced stage of urothelial differentiation: association with the inter-plaque ('hinge') area. Epithelial Cell Biol. 1992 Jan;1(1):4–12. [PubMed] [Google Scholar]
  58. Yu J., Manabe M., Wu X. R., Xu C., Surya B., Sun T. T. Uroplakin I: a 27-kD protein associated with the asymmetric unit membrane of mammalian urothelium. J Cell Biol. 1990 Sep;111(3):1207–1216. doi: 10.1083/jcb.111.3.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Zhang J. T., Nicholson B. J. Sequence and tissue distribution of a second protein of hepatic gap junctions, Cx26, as deduced from its cDNA. J Cell Biol. 1989 Dec;109(6 Pt 2):3391–3401. doi: 10.1083/jcb.109.6.3391. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES