Abstract
A series of small peptides, such as might arise in the course of intralysosomal protein digestion, were screened for the ability to escape, intact, from mouse peritoneal macrophage lysosomes. Inability to penetrate lysosomal membranes was inferred from a peptide's induction of lysosomal swelling, or vacuolization, in cultured macrophages. Two of the peptides tested, (D-Glu)2 and (D-Ala)3, induced vacuolization. Neither peptide was susceptible to hydrolysis by enzymes in macrophages or in the serum-containing culture medium. Their morphological effect was inhibited by parafluorophenylalanine, an inhibitor of pinocytosis. Once formed by either peptide, the vacuoles persisted for several hours in peptide-free medium. Quantitative studies of radioactively labeled (D-Glu)2 confirmed the morphological evidence that (D-Glu)2 is taken up by pinocytosis and stored, intact, in macrophage lysosomes. The majority of the peptides which failed to induce vacuolization—(L-Ala)2, L-Ser·L-Ala, L-Val·L-Ala, L-Ala·L-Thr, Gly·D, L-Phe, L-Ala·D-His, (L-Ala)3, (L-Glu)2, and D-Leu·L-Tyr—were found to be susceptible to hydrolysis by cellular or serum peptidases. Their failure to induce vacuolization was attributed to their hydrolysis to subunits capable of penetrating lysosomal membranes. Some of the peptides which had failed to induce vacuolization—(D-Ala)2, D-Ser·D-Ala, D-Val·D-Ala, Gly-D-Asn, D-Ala·D-Thr, and D-Arg·D-Val—were found to be indigestible. Except for the cytotoxic peptide D-Arg·D-Val, peptides in this category all had lower molecular weights and volumes than (Glu)2 or (Ala)3. It is inferred that these peptides are small enough to escape from macrophage lysosomes, while (Glu)2 and (Ala)3 are too large to escape intact. The implications of this inference for the mechanism of intracellular digestion of pinocytosed proteins are discussed.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ASKONAS B. A., RHODES J. M. IMMUNOGENICITY OF ANTIGEN-CONTAINING RIBONUCLEIC ACID PREPARATIONS FROM MACROPHAGES. Nature. 1965 Jan 30;205:470–474. doi: 10.1038/205470a0. [DOI] [PubMed] [Google Scholar]
- COHN Z. A., BENSON B. THE DIFFERENTIATION OF MONONUCLEAR PHAGOCYTES. MORPHOLOGY, CYTOCHEMISTRY, AND BIOCHEMISTRY. J Exp Med. 1965 Jan 1;121:153–170. doi: 10.1084/jem.121.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COHN Z. A., BENSON B. THE IN VITRO DIFFERENTIATION OF MONONUCLEAR PHAGOCYTES. I. THE INFLUENCE OF INHIBITORS AND THE RESULTS OF AUTORADIOGRAPHY. J Exp Med. 1965 Feb 1;121:279–288. doi: 10.1084/jem.121.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COHN Z. A., BENSON B. THE IN VITRO DIFFERENTIATION OF MONONUCLEAR PHAGOCYTES. II. THE INFLUENCE OF SERUM ON GRANULE FORMATION, HYDROLASE PRODUCTION, AND PINOCYTOSIS. J Exp Med. 1965 May 1;121:835–848. doi: 10.1084/jem.121.5.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COHN Z. A., WIENER E. THE PARTICULATE HYDROLASES OF MACROPHAGES. I. COMPARATIVE ENZYMOLOGY, ISOLATION, AND PROPERTIES. J Exp Med. 1963 Dec 1;118:991–1008. doi: 10.1084/jem.118.6.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohn Z. A., Benson B. The in vitro differentiation of mononuclear phagocytes. 3. The reversibility of granule and hydrolytic enzyme formation and the turnover of granule constituents. J Exp Med. 1965 Sep 1;122(3):455–466. doi: 10.1084/jem.122.3.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohn Z. A., Parks E. The regulation of pinocytosis in mouse macrophages. II. Factors inducing vesicle formation. J Exp Med. 1967 Feb 1;125(2):213–232. doi: 10.1084/jem.125.2.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohn Z. A. The regulation of pinocytosis in mouse macrophages. I. Metabolic requirements as defined by the use of inhibitors. J Exp Med. 1966 Oct 1;124(4):557–571. doi: 10.1084/jem.124.4.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ehrenreich B. A., Cohn Z. A. The uptake and digestion of iodinated human serum albumin by macrophages in vitro. J Exp Med. 1967 Nov 1;126(5):941–958. doi: 10.1084/jem.126.5.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallily R., Feldman M. The role of macrophages in the induction of antibody in x-irradiated animals. Immunology. 1967 Feb;12(2):197–206. [PMC free article] [PubMed] [Google Scholar]
- Kabat E. A. The nature of an antigenic determinant. J Immunol. 1966 Jul;97(1):1–11. [PubMed] [Google Scholar]
- Mego J. L., Bertini F., McQueen J. D. The use of formaldehyde-treated 131-I-albumin in the study of digestive vacuoles and some properties of these particles from mouse liver. J Cell Biol. 1967 Mar;32(3):699–707. doi: 10.1083/jcb.32.3.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PAPPENHEIMER J. R., RENKIN E. M., BORRERO L. M. Filtration, diffusion and molecular sieving through peripheral capillary membranes; a contribution to the pore theory of capillary permeability. Am J Physiol. 1951 Oct;167(1):13–46. doi: 10.1152/ajplegacy.1951.167.1.13. [DOI] [PubMed] [Google Scholar]
- SHIBKO S., TAPPEL A. L. DISTRIBUTION OF ESTERASES IN RAT LIVER. Arch Biochem Biophys. 1964 Jul 20;106:259–266. doi: 10.1016/0003-9861(64)90186-9. [DOI] [PubMed] [Google Scholar]
- WILZBACH K. E. Tritium gas exposure labeling. Adv Tracer Methodol. 1963;1:28–31. doi: 10.1007/978-1-4684-8619-3_5. [DOI] [PubMed] [Google Scholar]