Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1971 Nov 30;134(6):1545–1569. doi: 10.1084/jem.134.6.1545

CHOLESTEROL METABOLISM IN THE MACROPHAGE

I. THE REGULATION OF CHOLESTEROL EXCHANGE

Zena Werb 1, Zanvil A Cohn 1
PMCID: PMC2139099  PMID: 5126640

Abstract

The cholesterol metabolism of homogeneous populations of mouse peritoneal macrophages was evaluated under in vitro conditions. Macrophages are rich in free cholesterol and maintain a constant cholesterol to protein ratio (12 µg cholesterol/mg protein). No detectable cholesterol ester was present within the cell. More than 95% of total cholesterol was membrane associated and the majority was present in subcellular fractions containing lysosomes and plasma membrane. Less than 0.1% of cell cholesterol was synthesized from acetate-1-14C. During in vitro cultivation, macrophages rapidly exchanged their membrane cholesterol with that of lipoproteins of calf serum. About 30% of the cell cholesterol was exchanged per hour in 20% serum medium, and exchange was nearly complete by 5 hr. Exchange proceeded in a rapid exponential phase followed by a slower phase. Calculations based on a two compartment model indicated that the rapidly exchanging cholesterol compartment represented 60–70% of the total cell cholesterol, and the slowly exchanging compartment accounted for 30–40%. The relationship between serum lipoprotein concentration and exchange rate exhibited first-order kinetics. The rate was determined by thermal energy, in keeping with a Q 10 of 2, and an activation energy of 12 kcal/mole. Exchange was independent of bulk transport of lipoproteins by pinocytosis and phagocytosis, and was not linked to energy metabolism. The α-lipoproteins were the major class of proteins of calf serum participating in exchange.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASHWORTH L. A., GREEN C. THE TRANSFER OF LIPIDS BETWEEN HUMAN ALPH-LIPOPROTEIN AND ERYTHROCYTES. Biochim Biophys Acta. 1964 Apr 20;84:182–187. doi: 10.1016/0926-6542(64)90075-7. [DOI] [PubMed] [Google Scholar]
  2. Axline S. G. Isozymes of acid phosphatase in normal and Calmette-Guérin bacillus-induced rabbit alveolar macrophages. J Exp Med. 1968 Nov 1;128(5):1031–1048. doi: 10.1084/jem.128.5.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BAILEY J. M. LIPID METABOLISM IN CULTURED CELLS. IV. SERUM ALPHA GLOBULINS AND CELLULAR CHOLESTEROL EXCHANGE. Exp Cell Res. 1965 Jan;37:175–182. doi: 10.1016/0014-4827(65)90168-0. [DOI] [PubMed] [Google Scholar]
  4. BAILEY J. M. LIPID METABOLISM IN CULTURED CELLS. V. COMPARATIVE LIPID NUTRITION IN SERUM AND IN LIPID-FREE CHEMICALLY DEFINED MEDIUM. Proc Soc Exp Biol Med. 1964 Mar;115:747–750. doi: 10.3181/00379727-115-29026. [DOI] [PubMed] [Google Scholar]
  5. Bailey J. M. Cellular lipid nutrition and lipid transport. Wistar Inst Symp Monogr. 1967;6:85–113. [PubMed] [Google Scholar]
  6. Blaschko H., Firemark H., Smith A. D., Winkler H. Lipids of the adrenal medulla. Lysolecithin, a characteristic constituent of chromaffin granules. Biochem J. 1967 Aug;104(2):545–549. doi: 10.1042/bj1040545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brady R. O. Cerebral lipidoses. Annu Rev Med. 1970;21:317–334. doi: 10.1146/annurev.me.21.020170.001533. [DOI] [PubMed] [Google Scholar]
  8. Burns C. H., Rothblat G. H. Cholesterol excretion by tissue culture cells: effect of serum lipids. Biochim Biophys Acta. 1969 Apr 29;176(3):616–625. doi: 10.1016/0005-2760(69)90228-8. [DOI] [PubMed] [Google Scholar]
  9. COHN Z. A., BENSON B. THE DIFFERENTIATION OF MONONUCLEAR PHAGOCYTES. MORPHOLOGY, CYTOCHEMISTRY, AND BIOCHEMISTRY. J Exp Med. 1965 Jan 1;121:153–170. doi: 10.1084/jem.121.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. COHN Z. A., BENSON B. THE IN VITRO DIFFERENTIATION OF MONONUCLEAR PHAGOCYTES. II. THE INFLUENCE OF SERUM ON GRANULE FORMATION, HYDROLASE PRODUCTION, AND PINOCYTOSIS. J Exp Med. 1965 May 1;121:835–848. doi: 10.1084/jem.121.5.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. CONN H. L., Jr, ROBERTSON J. S. Kinetics of potassium transfer in the left ventricle of the intact dog. Am J Physiol. 1955 May;181(2):319–324. doi: 10.1152/ajplegacy.1955.181.2.319. [DOI] [PubMed] [Google Scholar]
  12. Chevallier F. Dynamics of cholesterol in rats, studied by the isotopic equilibrium method. Adv Lipid Res. 1967;5:209–239. doi: 10.1016/b978-1-4831-9941-2.50012-1. [DOI] [PubMed] [Google Scholar]
  13. Cohn Z. A., Ehrenreich B. A. The uptake, storage, and intracellular hydrolysis of carbohydrates by macrophages. J Exp Med. 1969 Jan 1;129(1):201–225. doi: 10.1084/jem.129.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cohn Z. A., Fedorko M. E., Hirsch J. G. The in vitro differentiation of mononuclear phagocytes. V. The formation of macrophage lysosomes. J Exp Med. 1966 Apr 1;123(4):757–766. doi: 10.1084/jem.123.4.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Cohn Z. A. The regulation of pinocytosis in mouse macrophages. I. Metabolic requirements as defined by the use of inhibitors. J Exp Med. 1966 Oct 1;124(4):557–571. doi: 10.1084/jem.124.4.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Cohn Z. A. The structure and function of monocytes and macrophages. Adv Immunol. 1968;9:163–214. doi: 10.1016/s0065-2776(08)60443-5. [DOI] [PubMed] [Google Scholar]
  17. Dietschy J. M., Siperstein M. D. Effect of cholesterol feeding and fasting on sterol synthesis in seventeen tissues of the rat. J Lipid Res. 1967 Mar;8(2):97–104. [PubMed] [Google Scholar]
  18. Ehrenreich B. A., Cohn Z. A. Fate of hemoglobin pincytosed by macrophages in vitro. J Cell Biol. 1968 Jul;38(1):244–248. doi: 10.1083/jcb.38.1.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ehrenreich B. A., Cohn Z. A. The uptake and digestion of iodinated human serum albumin by macrophages in vitro. J Exp Med. 1967 Nov 1;126(5):941–958. doi: 10.1084/jem.126.5.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  21. Frye L. D., Edidin M. The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons. J Cell Sci. 1970 Sep;7(2):319–335. doi: 10.1242/jcs.7.2.319. [DOI] [PubMed] [Google Scholar]
  22. Glomset J. A. The plasma lecithins:cholesterol acyltransferase reaction. J Lipid Res. 1968 Mar;9(2):155–167. [PubMed] [Google Scholar]
  23. Goodman D. S., Noble R. P. Turnover of plasma cholesterol in man. J Clin Invest. 1968 Feb;47(2):231–241. doi: 10.1172/JCI105719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Gordon S., Cohn Z. Macrophage-melanocyte heterokaryons. I. Preparation and properties. J Exp Med. 1970 May 1;131(5):981–1003. doi: 10.1084/jem.131.5.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. HAGERMAN J. S., GOULD R. G. The in vitro interchange of cholesterol between plasma and red cells. Proc Soc Exp Biol Med. 1951 Oct;78(1):329–332. doi: 10.3181/00379727-78-19064. [DOI] [PubMed] [Google Scholar]
  26. Hatch F. T. Practical methods for plasma lipoprotein analysis. Adv Lipid Res. 1968;6:1–68. [PubMed] [Google Scholar]
  27. Hays R. M., Franki N., Soberman R. Activation energy for water diffusion across the toad bladder: evidence against the pore enlargement hypothesis. J Clin Invest. 1971 May;50(5):1016–1018. doi: 10.1172/JCI106572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Holmes R., Helms J., Mercer G. Cholesterol requirement of primary diploid human fibroblasts. J Cell Biol. 1969 Jul;42(1):262–271. doi: 10.1083/jcb.42.1.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Jamieson J. D., Palade G. E. Intracellular transport of secretory proteins in the pancreatic exocrine cell. IV. Metabolic requirements. J Cell Biol. 1968 Dec;39(3):589–603. doi: 10.1083/jcb.39.3.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Jensen J. A further study of the kinetics of cholesterol uptake at the endothelial cell surface of the rabbit aorta in vitro. Biochim Biophys Acta. 1969 Jan 28;173(1):71–77. doi: 10.1016/0005-2736(69)90037-6. [DOI] [PubMed] [Google Scholar]
  31. Korn E. D. Cell membranes: structure and synthesis. Annu Rev Biochem. 1969;38:263–288. doi: 10.1146/annurev.bi.38.070169.001403. [DOI] [PubMed] [Google Scholar]
  32. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  33. MIETTINEN T. A., AHRENS E. H., Jr, GRUNDY S. M. QUANTITATIVE ISOLATION AND GAS--LIQUID CHROMATOGRAPHIC ANALYSIS OF TOTAL DIETARY AND FECAL NEUTRAL STEROIDS. J Lipid Res. 1965 Jul;6:411–424. [PubMed] [Google Scholar]
  34. Marcus A. J., Ullman H. L., Safier L. B. Lipid composition of subcellular particles of human blood platelets. J Lipid Res. 1969 Jan;10(1):108–114. [PubMed] [Google Scholar]
  35. McDONALD H. J., RIBEIRO L. P. Ethylene and propylene glycol in the pre-staining of lipoproteins for electrophoresis. Clin Chim Acta. 1959 May;4(3):458–459. doi: 10.1016/0009-8981(59)90121-4. [DOI] [PubMed] [Google Scholar]
  36. Narayan K. A., Creinin H. L., Kummerow F. A. Disc electrophoresis of rat plasma lipoproteins. J Lipid Res. 1966 Jan;7(1):150–157. [PubMed] [Google Scholar]
  37. POOLE J. C., FLOREY H. W. Changes in the endothelium of the aorta and the behaviour of macrophages in experimental atheroma of rabbits. J Pathol Bacteriol. 1958 Apr;75(2):245–251. doi: 10.1002/path.1700750202. [DOI] [PubMed] [Google Scholar]
  38. Parker F., Odland G. F. A correlative histochemical, biochemical and electron microscopic study of experimental atherosclerosis in the rabbit aorta with special reference to the myo-intimal cell. Am J Pathol. 1966 Feb;48(2):197–239. [PMC free article] [PubMed] [Google Scholar]
  39. Parker F., Odland G. F. Experimental xanthoma. A correlative biochemical, histologic, histochemical, and electron microscopic study. Am J Pathol. 1968 Oct;53(4):537–565. [PMC free article] [PubMed] [Google Scholar]
  40. ROHEIM P. S., HAFT D. E., GIDEZ L. I., WHITE A., EDER H. A. PLASMA LIPOPROTEIN METABOLISM IN PERFUSED RAT LIVERS. II. TRANSFER OF FREE AND ESTERIFIED CHOLESTEROL INTO THE PLASMA. J Clin Invest. 1963 Aug;42:1277–1285. doi: 10.1172/JCI104812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rothblat G. H., Burns C. H., Conner R. L., Landrey J. R. Desmosterol as the major sterol in L-cell mouse fibroblasts grown in sterol-free culture medium. Science. 1970 Aug 28;169(3948):880–882. doi: 10.1126/science.169.3948.880. [DOI] [PubMed] [Google Scholar]
  42. Rothblat G. H., Hartzell R., Mialhe H., Kritchevsky D. Cholesterol metabolism in tissue culture cells. Wistar Inst Symp Monogr. 1967;6:129–149. [PubMed] [Google Scholar]
  43. Rothblat G. H., Kritchevsky D. The metabolism of free and esterified cholesterol in tissue culture cells: a review. Exp Mol Pathol. 1968 Jun;8(3):314–329. doi: 10.1016/s0014-4800(68)80003-6. [DOI] [PubMed] [Google Scholar]
  44. Rothblat G. H. The effect of serum components on sterol biosynthesis in L cells. J Cell Physiol. 1969 Oct;74(2):163–170. doi: 10.1002/jcp.1040740208. [DOI] [PubMed] [Google Scholar]
  45. Stein O., Stein Y., Goodman D. S., Fidge N. H. The metabolism of chylomicron cholesteryl ester in rat liver. A combined radioautographic-electron microscopic and biochemical study. J Cell Biol. 1969 Dec;43(3):410–431. doi: 10.1083/jcb.43.3.410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Werb Z., Cohn Z. A. Cholesterol metabolism in the macrophage. II. Alteration of subcellular exchangeable cholesterol compartments and exchange in other cell types. J Exp Med. 1971 Dec 1;134(6):1570–1590. doi: 10.1084/jem.134.6.1570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. White D. A., Hawthorne J. N. Zymogen secretion and phospholipid metabolism in the pancreas. Phospholipids of the zymogen granule. Biochem J. 1970 Dec;120(3):533–538. doi: 10.1042/bj1200533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Widnell C. C., Unkeless J. C. Partial purification of a lipoprotein with 5'-nucleotidase activity from membranes of rat liver cells. Proc Natl Acad Sci U S A. 1968 Nov;61(3):1050–1057. doi: 10.1073/pnas.61.3.1050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wilson J. D. The measurement of the exchangeable pools of cholesterol in the baboon. J Clin Invest. 1970 Apr;49(4):655–665. doi: 10.1172/JCI106277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. YAMAMOTO T. On the thickness of the unit membrane. J Cell Biol. 1963 May;17:413–421. doi: 10.1083/jcb.17.2.413. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES