Abstract
The three-dimensional structure of a secreted aspartic protease from Candida albicans complexed with a potent inhibitor reveals variations on the classical aspartic protease theme that dramatically alter the specificity of this class of enzymes. The structure presents: (1) an 8-residue insertion near the first disulfide (Cys 45-Cys 50, pepsin numbering) that results in a broad flap extending toward the active site; (2) a 7-residue deletion replacing helix hN2 (Ser 110-Tyr 114), which enlarges the S3 pocket; (3) a short polar connection between the two rigid body domains that alters their relative orientation and provides certain specificity; and (4) an ordered 11-residue addition at the carboxy terminus. The inhibitor binds in an extended conformation and presents a branched structure at the P3 position. The implications of these findings for the design of potent antifungal agents are discussed.
Full Text
The Full Text of this article is available as a PDF (9.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abad-Zapatero C., Rydel T. J., Erickson J. Revised 2.3 A structure of porcine pepsin: evidence for a flexible subdomain. Proteins. 1990;8(1):62–81. doi: 10.1002/prot.340080109. [DOI] [PubMed] [Google Scholar]
- Bailey D., Cooper J. B. A structural comparison of 21 inhibitor complexes of the aspartic proteinase from Endothia parasitica. Protein Sci. 1994 Nov;3(11):2129–2143. doi: 10.1002/pro.5560031126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bolis G., Fung A. K., Greer J., Kleinert H. D., Marcotte P. A., Perun T. J., Plattner J. J., Stein H. H. Renin inhibitors. Dipeptide analogues of angiotensinogen incorporating transition-state, nonpeptidic replacements at the scissile bond. J Med Chem. 1987 Oct;30(10):1729–1737. doi: 10.1021/jm00393a008. [DOI] [PubMed] [Google Scholar]
- Brünger A. T., Kuriyan J., Karplus M. Crystallographic R factor refinement by molecular dynamics. Science. 1987 Jan 23;235(4787):458–460. doi: 10.1126/science.235.4787.458. [DOI] [PubMed] [Google Scholar]
- Bühlmayer P., Caselli A., Fuhrer W., Göschke R., Rasetti V., Rüeger H., Stanton J. L., Criscione L., Wood J. M. Synthesis and biological activity of some transition-state inhibitors of human renin. J Med Chem. 1988 Sep;31(9):1839–1846. doi: 10.1021/jm00117a027. [DOI] [PubMed] [Google Scholar]
- Capobianco J. O., Lerner C. G., Goldman R. C. Application of a fluorogenic substrate in the assay of proteolytic activity and in the discovery of a potent inhibitor of Candida albicans aspartic proteinase. Anal Biochem. 1992 Jul;204(1):96–102. doi: 10.1016/0003-2697(92)90145-w. [DOI] [PubMed] [Google Scholar]
- Chen L., Erickson J. W., Rydel T. J., Park C. H., Neidhart D., Luly J., Abad-Zapatero C. Structure of a pepsin/renin inhibitor complex reveals a novel crystal packing induced by minor chemical alterations in the inhibitor. Acta Crystallogr B. 1992 Aug 1;48(Pt 4):476–488. doi: 10.1107/s0108768192001939. [DOI] [PubMed] [Google Scholar]
- Cooper J., Foundling S., Hemmings A., Blundell T., Jones D. M., Hallett A., Szelke M. The structure of a synthetic pepsin inhibitor complexed with endothiapepsin. Eur J Biochem. 1987 Nov 16;169(1):215–221. doi: 10.1111/j.1432-1033.1987.tb13600.x. [DOI] [PubMed] [Google Scholar]
- Cutfield S. M., Dodson E. J., Anderson B. F., Moody P. C., Marshall C. J., Sullivan P. A., Cutfield J. F. The crystal structure of a major secreted aspartic proteinase from Candida albicans in complexes with two inhibitors. Structure. 1995 Nov 15;3(11):1261–1271. doi: 10.1016/s0969-2126(01)00261-1. [DOI] [PubMed] [Google Scholar]
- Cutler J. E. Putative virulence factors of Candida albicans. Annu Rev Microbiol. 1991;45:187–218. doi: 10.1146/annurev.mi.45.100191.001155. [DOI] [PubMed] [Google Scholar]
- Davies D. R. The structure and function of the aspartic proteinases. Annu Rev Biophys Biophys Chem. 1990;19:189–215. doi: 10.1146/annurev.bb.19.060190.001201. [DOI] [PubMed] [Google Scholar]
- Dealwis C. G., Frazao C., Badasso M., Cooper J. B., Tickle I. J., Driessen H., Blundell T. L., Murakami K., Miyazaki H., Sueiras-Diaz J. X-ray analysis at 2.0 A resolution of mouse submaxillary renin complexed with a decapeptide inhibitor CH-66, based on the 4-16 fragment of rat angiotensinogen. J Mol Biol. 1994 Feb 11;236(1):342–360. doi: 10.1006/jmbi.1994.1139. [DOI] [PubMed] [Google Scholar]
- Douglas L. J. Candida proteinases and candidosis. Crit Rev Biotechnol. 1988;8(2):121–129. doi: 10.3109/07388558809150541. [DOI] [PubMed] [Google Scholar]
- Fusek M., Smith E. A., Monod M., Dunn B. M., Foundling S. I. Extracellular aspartic proteinases from Candida albicans, Candida tropicalis, and Candida parapsilosis yeasts differ substantially in their specificities. Biochemistry. 1994 Aug 16;33(32):9791–9799. doi: 10.1021/bi00198a051. [DOI] [PubMed] [Google Scholar]
- Gilliland G. L., Winborne E. L., Nachman J., Wlodawer A. The three-dimensional structure of recombinant bovine chymosin at 2.3 A resolution. Proteins. 1990;8(1):82–101. doi: 10.1002/prot.340080110. [DOI] [PubMed] [Google Scholar]
- Goldman R. C., Frost D. J., Capobianco J. O., Kadam S., Rasmussen R. R., Abad-Zapatero C. Antifungal drug targets: Candida secreted aspartyl protease and fungal wall beta-glucan synthesis. Infect Agents Dis. 1995 Dec;4(4):228–247. [PubMed] [Google Scholar]
- Hsu I. N., Delbaere L. T., James M. N., Hofmann T. Penicillopepsin from Penicillium janthinellum crystal structure at 2.8 A and sequence homology with porcine pepsin. Nature. 1977 Mar 10;266(5598):140–145. doi: 10.1038/266140a0. [DOI] [PubMed] [Google Scholar]
- Hube B., Monod M., Schofield D. A., Brown A. J., Gow N. A. Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol Microbiol. 1994 Oct;14(1):87–99. doi: 10.1111/j.1365-2958.1994.tb01269.x. [DOI] [PubMed] [Google Scholar]
- Hube B., Turver C. J., Odds F. C., Eiffert H., Boulnois G. J., Köchel H., Rüchel R. Sequence of the Candida albicans gene encoding the secretory aspartate proteinase. J Med Vet Mycol. 1991;29(2):129–132. [PubMed] [Google Scholar]
- Hutchins C., Greer J. Comparative modeling of proteins in the design of novel renin inhibitors. Crit Rev Biochem Mol Biol. 1991;26(1):77–127. doi: 10.3109/10409239109081721. [DOI] [PubMed] [Google Scholar]
- Jones T. A. Diffraction methods for biological macromolecules. Interactive computer graphics: FRODO. Methods Enzymol. 1985;115:157–171. doi: 10.1016/0076-6879(85)15014-7. [DOI] [PubMed] [Google Scholar]
- Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
- Lerner C. G., Goldman R. C. Stimuli that induce production of Candida albicans extracellular aspartyl proteinase. J Gen Microbiol. 1993 Jul;139(7):1643–1651. doi: 10.1099/00221287-139-7-1643. [DOI] [PubMed] [Google Scholar]
- Lott T. J., Page L. S., Boiron P., Benson J., Reiss E. Nucleotide sequence of the Candida albicans aspartyl proteinase gene. Nucleic Acids Res. 1989 Feb 25;17(4):1779–1779. doi: 10.1093/nar/17.4.1779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lowther W. T., Majer P., Dunn B. M. Engineering the substrate specificity of rhizopuspepsin: the role of Asp 77 of fungal aspartic proteinases in facilitating the cleavage of oligopeptide substrates with lysine in P1. Protein Sci. 1995 Apr;4(4):689–702. doi: 10.1002/pro.5560040409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magee B. B., Hube B., Wright R. J., Sullivan P. J., Magee P. T. The genes encoding the secreted aspartyl proteinases of Candida albicans constitute a family with at least three members. Infect Immun. 1993 Aug;61(8):3240–3243. doi: 10.1128/iai.61.8.3240-3243.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyasaki S. H., White T. C., Agabian N. A fourth secreted aspartyl proteinase gene (SAP4) and a CARE2 repetitive element are located upstream of the SAP1 gene in Candida albicans. J Bacteriol. 1994 Mar;176(6):1702–1710. doi: 10.1128/jb.176.6.1702-1710.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Monod M., Togni G., Hube B., Sanglard D. Multiplicity of genes encoding secreted aspartic proteinases in Candida species. Mol Microbiol. 1994 Jul;13(2):357–368. doi: 10.1111/j.1365-2958.1994.tb00429.x. [DOI] [PubMed] [Google Scholar]
- Newman M., Watson F., Roychowdhury P., Jones H., Badasso M., Cleasby A., Wood S. P., Tickle I. J., Blundell T. L. X-ray analyses of aspartic proteinases. V. Structure and refinement at 2.0 A resolution of the aspartic proteinase from Mucor pusillus. J Mol Biol. 1993 Mar 5;230(1):260–283. [PubMed] [Google Scholar]
- Ponder J. W., Richards F. M. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol. 1987 Feb 20;193(4):775–791. doi: 10.1016/0022-2836(87)90358-5. [DOI] [PubMed] [Google Scholar]
- Rahuel J., Priestle J. P., Grütter M. G. The crystal structures of recombinant glycosylated human renin alone and in complex with a transition state analog inhibitor. J Struct Biol. 1991 Dec;107(3):227–236. doi: 10.1016/1047-8477(91)90048-2. [DOI] [PubMed] [Google Scholar]
- Ray T. L., Payne C. D. Comparative production and rapid purification of Candida acid proteinase from protein-supplemented cultures. Infect Immun. 1990 Feb;58(2):508–514. doi: 10.1128/iai.58.2.508-514.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rüchel R., Ritter B., Schaffrinski M. Modulation of experimental systemic murine candidosis by intravenous pepstatin. Zentralbl Bakteriol. 1990 Aug;273(3):391–403. doi: 10.1016/s0934-8840(11)80443-3. [DOI] [PubMed] [Google Scholar]
- Rüchel R., de Bernardis F., Ray T. L., Sullivan P. A., Cole G. T. Candida acid proteinases. J Med Vet Mycol. 1992;30 (Suppl 1):123–132. [PubMed] [Google Scholar]
- Sali A., Veerapandian B., Cooper J. B., Foundling S. I., Hoover D. J., Blundell T. L. High-resolution X-ray diffraction study of the complex between endothiapepsin and an oligopeptide inhibitor: the analysis of the inhibitor binding and description of the rigid body shift in the enzyme. EMBO J. 1989 Aug;8(8):2179–2188. doi: 10.1002/j.1460-2075.1989.tb08340.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sali A., Veerapandian B., Cooper J. B., Moss D. S., Hofmann T., Blundell T. L. Domain flexibility in aspartic proteinases. Proteins. 1992 Feb;12(2):158–170. doi: 10.1002/prot.340120209. [DOI] [PubMed] [Google Scholar]
- Sielecki A. R., Fedorov A. A., Boodhoo A., Andreeva N. S., James M. N. Molecular and crystal structures of monoclinic porcine pepsin refined at 1.8 A resolution. J Mol Biol. 1990 Jul 5;214(1):143–170. doi: 10.1016/0022-2836(90)90153-D. [DOI] [PubMed] [Google Scholar]
- Tang J., James M. N., Hsu I. N., Jenkins J. A., Blundell T. L. Structural evidence for gene duplication in the evolution of the acid proteases. Nature. 1978 Feb 16;271(5646):618–621. doi: 10.1038/271618a0. [DOI] [PubMed] [Google Scholar]
- White T. C., Agabian N. Candida albicans secreted aspartyl proteinases: isoenzyme pattern is determined by cell type, and levels are determined by environmental factors. J Bacteriol. 1995 Sep;177(18):5215–5221. doi: 10.1128/jb.177.18.5215-5221.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zotter C., Haustein U. F., Schönborn C., Grimmecke H. D., Wand H. Die Wirkung von Pepstatin A auf die Candida-albicans-Infektion der Maus. Dermatol Monatsschr. 1990;176(2-3):189–198. [PubMed] [Google Scholar]