Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Jan;9(1):180–185. doi: 10.1110/ps.9.1.180

Common EF-hand motifs in cholinesterases and neuroligins suggest a role for Ca2+ binding in cell surface associations.

I Tsigelny 1, I N Shindyalov 1, P E Bourne 1, T C Südhof 1, P Taylor 1
PMCID: PMC2144444  PMID: 10739260

Abstract

Comparisons of protein sequence via cyclic training of Hidden Markov Models (HMMs) in conjunction with alignments of three-dimensional structure, using the Combinatorial Extension (CE) algorithm, reveal two putative EF-hand metal binding domains in acetylcholinesterase. Based on sequence similarity, putative EF-hands are also predicted for the neuroligin family of cell surface proteins. These predictions are supported by experimental evidence. In the acetylcholinesterase crystal structure from Torpedo californica, the first putative EF-hand region binds the Zn2+ found in the heavy metal replacement structure. Further, the interaction of neuroligin 1 with its cognate receptor neurexin depends on Ca2+. Thus, members of the alpha,beta hydrolase fold family of proteins contain potential Ca2+ binding sites, which in some family members may be critical for heterologous cell associations.

Full Text

The Full Text of this article is available as a PDF (579.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed F. R., Rose D. R., Evans S. V., Pippy M. E., To R. Refinement of recombinant oncomodulin at 1.30 A resolution. J Mol Biol. 1993 Apr 20;230(4):1216–1224. doi: 10.1006/jmbi.1993.1237. [DOI] [PubMed] [Google Scholar]
  2. Bourne Y., Taylor P., Marchot P. Acetylcholinesterase inhibition by fasciculin: crystal structure of the complex. Cell. 1995 Nov 3;83(3):503–512. doi: 10.1016/0092-8674(95)90128-0. [DOI] [PubMed] [Google Scholar]
  3. Chattopadhyaya R., Meador W. E., Means A. R., Quiocho F. A. Calmodulin structure refined at 1.7 A resolution. J Mol Biol. 1992 Dec 20;228(4):1177–1192. doi: 10.1016/0022-2836(92)90324-d. [DOI] [PubMed] [Google Scholar]
  4. Harel M., Schalk I., Ehret-Sabatier L., Bouet F., Goeldner M., Hirth C., Axelsen P. H., Silman I., Sussman J. L. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9031–9035. doi: 10.1073/pnas.90.19.9031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hohenester E., Maurer P., Timpl R. Crystal structure of a pair of follistatin-like and EF-hand calcium-binding domains in BM-40. EMBO J. 1997 Jul 1;16(13):3778–3786. doi: 10.1093/emboj/16.13.3778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Holm L., Sander C. Protein structure comparison by alignment of distance matrices. J Mol Biol. 1993 Sep 5;233(1):123–138. doi: 10.1006/jmbi.1993.1489. [DOI] [PubMed] [Google Scholar]
  7. Houdusse A., Love M. L., Dominguez R., Grabarek Z., Cohen C. Structures of four Ca2+-bound troponin C at 2.0 A resolution: further insights into the Ca2+-switch in the calmodulin superfamily. Structure. 1997 Dec 15;5(12):1695–1711. doi: 10.1016/s0969-2126(97)00315-8. [DOI] [PubMed] [Google Scholar]
  8. Kretsinger R. H., Nockolds C. E. Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem. 1973 May 10;248(9):3313–3326. [PubMed] [Google Scholar]
  9. Madej T., Gibrat J. F., Bryant S. H. Threading a database of protein cores. Proteins. 1995 Nov;23(3):356–369. doi: 10.1002/prot.340230309. [DOI] [PubMed] [Google Scholar]
  10. Maurer P., Hohenester E., Engel J. Extracellular calcium-binding proteins. Curr Opin Cell Biol. 1996 Oct;8(5):609–617. doi: 10.1016/s0955-0674(96)80101-3. [DOI] [PubMed] [Google Scholar]
  11. McPhalen C. A., Strynadka N. C., James M. N. Calcium-binding sites in proteins: a structural perspective. Adv Protein Chem. 1991;42:77–144. doi: 10.1016/s0065-3233(08)60535-5. [DOI] [PubMed] [Google Scholar]
  12. Nguyen T., Südhof T. C. Binding properties of neuroligin 1 and neurexin 1beta reveal function as heterophilic cell adhesion molecules. J Biol Chem. 1997 Oct 10;272(41):26032–26039. doi: 10.1074/jbc.272.41.26032. [DOI] [PubMed] [Google Scholar]
  13. Olson P. F., Fessler L. I., Nelson R. E., Sterne R. E., Campbell A. G., Fessler J. H. Glutactin, a novel Drosophila basement membrane-related glycoprotein with sequence similarity to serine esterases. EMBO J. 1990 Apr;9(4):1219–1227. doi: 10.1002/j.1460-2075.1990.tb08229.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pottgiesser J., Maurer P., Mayer U., Nischt R., Mann K., Timpl R., Krieg T., Engel J. Changes in calcium and collagen IV binding caused by mutations in the EF hand and other domains of extracellular matrix protein BM-40 (SPARC, osteonectin). J Mol Biol. 1994 May 13;238(4):563–574. doi: 10.1006/jmbi.1994.1315. [DOI] [PubMed] [Google Scholar]
  15. Raves M. L., Harel M., Pang Y. P., Silman I., Kozikowski A. P., Sussman J. L. Structure of acetylcholinesterase complexed with the nootropic alkaloid, (-)-huperzine A. Nat Struct Biol. 1997 Jan;4(1):57–63. doi: 10.1038/nsb0197-57. [DOI] [PubMed] [Google Scholar]
  16. Rizo J., Südhof T. C. C2-domains, structure and function of a universal Ca2+-binding domain. J Biol Chem. 1998 Jun 26;273(26):15879–15882. doi: 10.1074/jbc.273.26.15879. [DOI] [PubMed] [Google Scholar]
  17. Shindyalov I. N., Bourne P. E. Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng. 1998 Sep;11(9):739–747. doi: 10.1093/protein/11.9.739. [DOI] [PubMed] [Google Scholar]
  18. Sussman J. L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science. 1991 Aug 23;253(5022):872–879. doi: 10.1126/science.1678899. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES