Abstract
1. Action potentials from sinus venosus and auricle fibers of spontaneously beating frog hearts have been recorded with intracellular electrodes. 2. Sinus fibers show a slow depolarization, the pacemaker potential, during diastole. The amplitude of this potential varies in different parts of the sinus. In some fibers the membrane potential falls by 11 to 15 mv. during diastole and the transition to the upstroke of the action potential is comparatively gradual. In other regions the depolarization develops more slowly and the action potential takes off more abruptly from a higher membrane potential. It is proposed that the fibers showing the largest fall in membrane potential during diastole are the pacemaker fibers of the heart, and that the rest of the preparation is excited by conduction. In auricle fibers the membrane potential is constant during diastole. 3. The maximum diastolic membrane potential and the overshoot of the action potential vary inversely with the amplitude of the pacemaker potential. The highest values were measured in auricle fibers. 4. Stimulation of vagi suppresses the pacemaker potentials. While the heart is arrested the membrane potential of the sinus fibers rises to a level above the maximum diastolic value reached in previous beats. In 28 experiments vagal stimulation increased the membrane potential from an average maximal diastolic value of 55 mv. to a "resting" level of 65.4 mv. The biggest vagal polarization was 23 mv. 5. In contrast to the sinus fibers vagal inhibition does not change the diastolic membrane potential of frog auricle fibers. 6. Vagal stimulation greatly accelerates the repolarization of the action potential and reduces its amplitude. These changes were seen both in the sinus and in auricle fibers stimulated by direct shocks during vagal arrest. 7. The conduction velocity in the sinus venosus of the tortoise is reduced by vagal stimulation. Block of conduction often occurs. 8. In the frog sinus venosus sympathetic stimulation increases the rate of rise of the pacemaker potential, accelerating the beat. The threshold remains unchanged. The rate of rise of the upstroke and the amplitude of the overshoot are increased. 9. The analogies between the vagal inhibition of the heart and the nervous inhibition of other preparations are discussed.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BROCK L. G., COOMBS J. S., ECCLES J. C. The recording of potentials from motoneurones with an intracellular electrode. J Physiol. 1952 Aug;117(4):431–460. doi: 10.1113/jphysiol.1952.sp004759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BURGEN A. S., TERROUX K. G. On the negative inotropic effect in the cat's auricle. J Physiol. 1953 Jun 29;120(4):449–464. doi: 10.1113/jphysiol.1953.sp004910. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DEL CASTILLO J., KATZ B. Local activity at a depolarized nerve-muscle junction. J Physiol. 1955 May 27;128(2):396–411. doi: 10.1113/jphysiol.1955.sp005315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DEL CASTILLO J., KATZ B. Production of membrane potential changes in the frog's heart by inhibitory nerve impulses. Nature. 1955 Jun 11;175(4467):1035–1035. doi: 10.1038/1751035a0. [DOI] [PubMed] [Google Scholar]
- DRAPER M. H., WEIDMANN S. Cardiac resting and action potentials recorded with an intracellular electrode. J Physiol. 1951 Sep;115(1):74–94. doi: 10.1113/jphysiol.1951.sp004653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daly I. de B., Clark A. J. The action of ions upon the frog's heart. J Physiol. 1921 Mar 15;54(5-6):367–383. doi: 10.1113/jphysiol.1921.sp001938. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FATT P. Biophysics of junctional transmission. Physiol Rev. 1954 Oct;34(4):674–710. doi: 10.1152/physrev.1954.34.4.674. [DOI] [PubMed] [Google Scholar]
- FATT P., KATZ B. An analysis of the end-plate potential recorded with an intracellular electrode. J Physiol. 1951 Nov 28;115(3):320–370. doi: 10.1113/jphysiol.1951.sp004675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FATT P., KATZ B. The effect of inhibitory nerve impulses on a crustacean muscle fibre. J Physiol. 1953 Aug;121(2):374–389. doi: 10.1113/jphysiol.1953.sp004952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOFFART M., PERRY W. L. M. The action of adrenaline on the rate of loss of potassium ions from unfatigued striated muscle. J Physiol. 1951 Jan;112(1-2):95–101. doi: 10.1113/jphysiol.1951.sp004511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaskell W. H. The Electrical changes in the Quiescent Cardiac Muscle which accompany Stimulation of the Vagus Nerve. J Physiol. 1886 Nov;7(5-6):451–452. doi: 10.1113/jphysiol.1886.sp000235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOFFMAN B. F., SUCKLING E. E. Cardiac cellular potentials; effect of vagal stimulation and acetylcholine. Am J Physiol. 1953 May;173(2):312–320. doi: 10.1152/ajplegacy.1953.173.2.312. [DOI] [PubMed] [Google Scholar]
- HOLLAND W. C., DUNN C. E., GREIG M. E. Studies on permeability. VIII. Role of acetylcholine metabolism in the genesis of the electrocardiogram. Am J Physiol. 1952 Aug;170(2):339–345. doi: 10.1152/ajplegacy.1952.170.2.339. [DOI] [PubMed] [Google Scholar]
- Hodgkin A. L. The local electric changes associated with repetitive action in a non-medullated axon. J Physiol. 1948 Mar 15;107(2):165–181. doi: 10.1113/jphysiol.1948.sp004260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KUFFLER S. W., EYZAGUIRRE C. Synaptic inhibition in an isolated nerve cell. J Gen Physiol. 1955 Sep 20;39(1):155–184. doi: 10.1085/jgp.39.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TRAUTWEIN W. Der Einfluss der Strophanthins auf das Ruhe- und Aktionspotential der geschädigten Herzmuskelfaser. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1952;216(1-2):197–199. [PubMed] [Google Scholar]
- WEIDMANN S. Effect of current flow on the membrane potential of cardiac muscle. J Physiol. 1951 Oct 29;115(2):227–236. doi: 10.1113/jphysiol.1951.sp004667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEIDMANN S. The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system. J Physiol. 1955 Jan 28;127(1):213–224. doi: 10.1113/jphysiol.1955.sp005250. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WOODBURY L. A., HECHT H. H., CHRISTOPHERSON A. R. Membrane resting and action potentials of single cardiac muscle fibers of the frog ventricle. Am J Physiol. 1951 Feb;164(2):307–318. doi: 10.1152/ajplegacy.1951.164.2.307. [DOI] [PubMed] [Google Scholar]