Abstract
Two forms of hypoxia are thought to exist in tumours: (1) hypoxia caused by limitations of its diffusion (chronic hypoxia); and (2) hypoxia caused by changes in perfusion (acute hypoxia). Indirect information suggests the existence of perfusion-limited hypoxia, but there is no direct proof that fluctuations in blood flow can lead to hypoxia, nor is there any information regarding potential causes of fluctuant flow. In this study, we have begun to explore these questions using R3230AC tumours transplanted into rat dorsal-flap window chambers. Two types of fluctuant flow have been observed. The first type, usually confined to single vessels, is typified by instability of flow magnitude and direction, and total vascular stasis occurs, but only for a few seconds at a time (4% incidence). The second type of fluctuation occurs in groups of vessels and is cyclic, with cycle times ranging from 20-60 min. Total vascular stasis does not necessarily occur, but the fluctuations in red cell flux are accompanied by changes in vascular oxygen content, as measured by microelectrodes. Another source of chronic hypoxia has also been identified in these experiments. Nine per cent (9%) of vessels examined had plasma flow, but very low or absent red cell flux over periods of many minutes.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALGIRE G. H., LEGALLAIS F. Y. Recent developments in the transparent-chamber technique as adapted to the mouse. J Natl Cancer Inst. 1949 Oct;10(2):225-53, incl 8 pl. [PubMed] [Google Scholar]
- Biol M. C., Martin A., Oehninger C., Louisot P., Richard M. Biosynthesis of glycoproteins in the intestinal mucosa. II. Influence of diets. Ann Nutr Metab. 1981;25(5):269–280. doi: 10.1159/000176506. [DOI] [PubMed] [Google Scholar]
- Brizel D. M., Klitzman B., Cook J. M., Edwards J., Rosner G., Dewhirst M. W. A comparison of tumor and normal tissue microvascular hematocrits and red cell fluxes in a rat window chamber model. Int J Radiat Oncol Biol Phys. 1993 Jan 15;25(2):269–276. doi: 10.1016/0360-3016(93)90348-y. [DOI] [PubMed] [Google Scholar]
- Brown J. M. Evidence for acutely hypoxic cells in mouse tumours, and a possible mechanism of reoxygenation. Br J Radiol. 1979 Aug;52(620):650–656. doi: 10.1259/0007-1285-52-620-650. [DOI] [PubMed] [Google Scholar]
- Chaplin D. J., Durand R. E., Olive P. L. Acute hypoxia in tumors: implications for modifiers of radiation effects. Int J Radiat Oncol Biol Phys. 1986 Aug;12(8):1279–1282. doi: 10.1016/0360-3016(86)90153-7. [DOI] [PubMed] [Google Scholar]
- Chaplin D. J., Olive P. L., Durand R. E. Intermittent blood flow in a murine tumor: radiobiological effects. Cancer Res. 1987 Jan 15;47(2):597–601. [PubMed] [Google Scholar]
- Dewhirst M. W., Ong E. T., Klitzman B., Secomb T. W., Vinuya R. Z., Dodge R., Brizel D., Gross J. F. Perivascular oxygen tensions in a transplantable mammary tumor growing in a dorsal flap window chamber. Radiat Res. 1992 May;130(2):171–182. [PubMed] [Google Scholar]
- Endrich B., Hammersen F., Götz A., Messmer K. Microcirculatory blood flow, capillary morphology and local oxygen pressure of the hamster amelanotic melanoma A-Mel-3. J Natl Cancer Inst. 1982 Mar;68(3):475–485. [PubMed] [Google Scholar]
- Endrich B., Intaglietta M., Reinhold H. S., Gross J. F. Hemodynamic characteristics in microcirculatory blood channels during early tumor growth. Cancer Res. 1979 Jan;39(1):17–23. [PubMed] [Google Scholar]
- Intaglietta M., Myers R. R., Gross J. F., Reinhold H. S. Dynamics of microvascular flow in implanted mouse mammary tumours. Bibl Anat. 1977;(15 Pt 1):273–276. [PubMed] [Google Scholar]
- Jirtle R. L. Chemical modification of tumour blood flow. Int J Hyperthermia. 1988 Jul-Aug;4(4):355–371. doi: 10.3109/02656738809016490. [DOI] [PubMed] [Google Scholar]
- Kennovin G. D., Flitney F. W., Hirst D. G. "Upstream" modification of vasoconstrictor responses in rat epigastric artery supplying an implanted tumour. Adv Exp Med Biol. 1994;345:411–416. doi: 10.1007/978-1-4615-2468-7_54. [DOI] [PubMed] [Google Scholar]
- Minchinton A. I., Durand R. E., Chaplin D. J. Intermittent blood flow in the KHT sarcoma--flow cytometry studies using Hoechst 33342. Br J Cancer. 1990 Aug;62(2):195–200. doi: 10.1038/bjc.1990.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Papenfuss H. D., Gross J. F., Intaglietta M., Treese F. A. A transparent access chamber for the rat dorsal skin fold. Microvasc Res. 1979 Nov;18(3):311–318. doi: 10.1016/0026-2862(79)90039-6. [DOI] [PubMed] [Google Scholar]
- Szoka F., Jr, Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng. 1980;9:467–508. doi: 10.1146/annurev.bb.09.060180.002343. [DOI] [PubMed] [Google Scholar]
- Teicher B. A., Herman T. S., Hopkins R. E., Menon K. Effect of oxygen level on the enhancement of tumor response to radiation by perfluorochemical emulsions or a bovine hemoglobin preparation. Int J Radiat Oncol Biol Phys. 1991 Sep;21(4):969–974. doi: 10.1016/0360-3016(91)90737-o. [DOI] [PubMed] [Google Scholar]
- Trotter M. J., Chaplin D. J., Olive P. L. Possible mechanisms for intermittent blood flow in the murine SCCVII carcinoma. Int J Radiat Biol. 1991 Jul-Aug;60(1-2):139–146. doi: 10.1080/09553009114551731. [DOI] [PubMed] [Google Scholar]
- Unthank J. L., Lash J. M., Nixon J. C., Sidner R. A., Bohlen H. G. Evaluation of carbocyanine-labeled erythrocytes for microvascular measurements. Microvasc Res. 1993 Mar;45(2):193–210. doi: 10.1006/mvre.1993.1018. [DOI] [PubMed] [Google Scholar]
- Yamaura H., Matsuzawa T. Tumor regrowth after irradiation; an experimental approach. Int J Radiat Biol Relat Stud Phys Chem Med. 1979 Mar;35(3):201–219. doi: 10.1080/09553007914550241. [DOI] [PubMed] [Google Scholar]