Abstract
As reported previously, mouse peritoneal macrophages could be activated to kill intracellular trypomastigotes of Trypanosoma cruzi, the agent of Chagas' disease, in either of two ways: by immunizing and boosting the mice (3), or by culturing resident or inflammatory macrophages in spleen cell factor(s) (SCF) in vitro (2). Macrophages activated in vivo became less trypanocidal with time in culture, and cells activated in vitro lost trypanocidal capacity when CSF was removed (2). In the present study, the ability of macrophages to release H2O2 in response to phorbol myristate acetate (PMA) could be induced in vivo and in vitro, and reversed in vitro, in a manner correlating closely with changes in trypanocidal activity. Macrophages could be activated in vitro with SCF in a time-dependent and dose-dependent fashion, so that they released as much H2O2 as macrophages activated in vivo. The sensitivity of epimastigotes and trypomastigotes to enzymatically generated H2O2 suggested that the generation of H2O2 by activated macrophages could be plausible explanation for their trypanocidal activity. Of the biochemical correlates of macrophage activation reported to date, increased ability to release H2O2 seems most closely allied to enhanced capacity to kill an intracellular pathogen.
Full Text
The Full Text of this article is available as a PDF (870.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Babior B. M. Oxygen-dependent microbial killing by phagocytes (first of two parts). N Engl J Med. 1978 Mar 23;298(12):659–668. doi: 10.1056/NEJM197803232981205. [DOI] [PubMed] [Google Scholar]
- Baehner R. L., Boxer L. A., Davis J. The biochemical basis of nitroblue tetrazolium reduction in normal human and chronic granulomatous disease polymorphonuclear leukocytes. Blood. 1976 Aug;48(2):309–313. [PubMed] [Google Scholar]
- Block L. H., Jaksche H., Bamberger S., Ruhenstroth-Bauer G. Human migration inhibitory factor: purification and immunochemical characterization. J Exp Med. 1978 Feb 1;147(2):541–553. doi: 10.1084/jem.147.2.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boveris A., Docampo R., Turrens J. F., Stoppani A. O. Effect of beta-lapachone on superoxide anion and hydrogen peroxide production in Trypanosoma cruzi. Biochem J. 1978 Nov 1;175(2):431–439. doi: 10.1042/bj1750431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boveris A., Martino E., Stoppani A. O. Evaluation of the horseradish peroxidase-scopoletin method for the measurement of hydrogen peroxide formation in biological systems. Anal Biochem. 1977 May 15;80(1):145–158. doi: 10.1016/0003-2697(77)90634-0. [DOI] [PubMed] [Google Scholar]
- COHN M. L., KOVITZ C., ODA U., MIDDLEBROOK G. Studies on isoniazid and tubercle bacilli. II. The growth requirements, catalase activities, and pathogenic properties of isoniazid-resistant mutants. Am Rev Tuberc. 1954 Oct;70(4):641–664. doi: 10.1164/art.1954.70.4.641. [DOI] [PubMed] [Google Scholar]
- COLEMAN C. M., MIDDLEBROOK G. The effects of some sulfhydryl compounds on growth of catalase-positive and catalase-negative tubercle bacilli. Am Rev Tuberc. 1956 Jul;74(1):42–49. doi: 10.1164/artpd.1956.74.1.42. [DOI] [PubMed] [Google Scholar]
- Cohn Z. A. Activation of mononuclear phagocytes: fact, fancy, and future. J Immunol. 1978 Sep;121(3):813–816. [PubMed] [Google Scholar]
- Cruz F. S., Docampo R., de Souza W. Effect of beta-lapachone on hydrogen peroxide production in Trypanosoma cruzi. Acta Trop. 1978 Mar;35(1):35–40. [PubMed] [Google Scholar]
- Docampo R., Cruz F. S., Boveris A., Muniz R. P., Esquivel D. M. Lipid peroxidation and the generation of free radicals, superoxide anion, and hydrogen peroxide in beta-lapachone-treated Trypanosoma cruzi epimastigotes. Arch Biochem Biophys. 1978 Mar;186(2):292–297. doi: 10.1016/0003-9861(78)90438-1. [DOI] [PubMed] [Google Scholar]
- FULTON J. D., SPOONER D. F. Inhibition of the respiration of Trypanosoma rhodesiense by thiols. Biochem J. 1956 Jul;63(3):475–481. doi: 10.1042/bj0630475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnston R. B., Jr, Godzik C. A., Cohn Z. A. Increased superoxide anion production by immunologically activated and chemically elicited macrophages. J Exp Med. 1978 Jul 1;148(1):115–127. doi: 10.1084/jem.148.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KNOX R., MEADOW P. M., WORSSAM A. R. The relationship between the catalase activity, hydrogen peroxide sensitivity, and isoniazid resistance of mycobacteria. Am Rev Tuberc. 1956 May;73(5):726–734. doi: 10.1164/artpd.1956.73.5.726. [DOI] [PubMed] [Google Scholar]
- Karnovsky M. L., Lazdins J. K. Biochemical criteria for activated macrophages. J Immunol. 1978 Sep;121(3):809–813. [PubMed] [Google Scholar]
- Klebanoff S. J. Antimicrobial mechanisms in neutrophilic polymorphonuclear leukocytes. Semin Hematol. 1975 Apr;12(2):117–142. [PubMed] [Google Scholar]
- Krueger G. G., Ogden B. E., Weston W. L. In vitro quantitation of cell-mediated immunity in guinea-pigs by macrophage reduction of nitro-blue tetrazolium. Clin Exp Immunol. 1976 Mar;23(3):517–524. [PMC free article] [PubMed] [Google Scholar]
- Kühner A. L., David J. R. Partial characterization of murine migration inhibitory factor (MIF). J Immunol. 1976 Jan;116(1):140–145. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lazdins J. K., Kühner A. L., David J. R., Karnovsky M. L. Alteration of some functional and metabolic characteristics of resident mouse peritoneal macrophages by lymphocyte mediators. J Exp Med. 1978 Sep 1;148(3):746–758. doi: 10.1084/jem.148.3.746. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leonard E. J., Ruco L. P., Meltzer M. S. Characterization of macrophage activation factor, a lymphokine that causes macrophages to become cytotoxic for tumor cells. Cell Immunol. 1978 Dec;41(2):347–357. doi: 10.1016/0008-8749(78)90232-0. [DOI] [PubMed] [Google Scholar]
- MITCHISON D. A., SELKON J. B., LLOYD J. VIRULENCE IN THE GUINEA-PIG, SUSCEPTIBILITY TO HYDROGEN PEROXIDE, AND CATALASE ACTIVITY OF ISONIAZID-SENSITIVE TUBERCLE BACILLI FROM SOUTH INDIAN AND BRITISH PATIENTS. J Pathol Bacteriol. 1963 Oct;86:377–386. doi: 10.1002/path.1700860213. [DOI] [PubMed] [Google Scholar]
- Meshnick S. R., Blobstein S. H., Grady R. W., Cerami A. An approach to the development of new drugs for African trypanosomiasis. J Exp Med. 1978 Aug 1;148(2):569–579. doi: 10.1084/jem.148.2.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nath I., Poulter L. W., Turk J. L. Effect of lymphocyte mediators on macrophages in vitro. A correlation of morphological and cytochemical changes. Clin Exp Immunol. 1973 Mar;13(3):455–466. [PMC free article] [PubMed] [Google Scholar]
- Nathan C. F., Brukner L. H., Silverstein S. C., Cohn Z. A. Extracellular cytolysis by activated macrophages and granulocytes. I. Pharmacologic triggering of effector cells and the release of hydrogen peroxide. J Exp Med. 1979 Jan 1;149(1):84–99. doi: 10.1084/jem.149.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nathan C. F., Karnovsky M. L., David J. R. Alterations of macrophage functions by mediators from lymphocytes. J Exp Med. 1971 Jun 1;133(6):1356–1376. doi: 10.1084/jem.133.6.1356. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nathan C. F., Remold H. G., David J. R. Characterization of a lymphocyte factor which alters macrophage functions. J Exp Med. 1973 Feb 1;137(2):275–290. doi: 10.1084/jem.137.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nathan C. F., Root R. K. Hydrogen peroxide release from mouse peritoneal macrophages: dependence on sequential activation and triggering. J Exp Med. 1977 Dec 1;146(6):1648–1662. doi: 10.1084/jem.146.6.1648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nathan C. F., Silverstein S. C., Brukner L. H., Cohn Z. A. Extracellular cytolysis by activated macrophages and granulocytes. II. Hydrogen peroxide as a mediator of cytotoxicity. J Exp Med. 1979 Jan 1;149(1):100–113. doi: 10.1084/jem.149.1.100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nathan C. F., Terry W. D. Differential stimulation of murine lymphoma growth in vitro by normal and BCG-activated macrophages. J Exp Med. 1975 Oct 1;142(4):887–902. doi: 10.1084/jem.142.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nogueira N., Bianco C., Cohn Z. Studies on the selective lysis and purification of Trypanosoma cruzi. J Exp Med. 1975 Jul 1;142(1):224–229. doi: 10.1084/jem.142.1.224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nogueira N., Cohn Z. A. Trypanosoma cruzi: in vitro induction of macrophage microbicidal activity. J Exp Med. 1978 Jul 1;148(1):288–300. doi: 10.1084/jem.148.1.288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nogueira N., Cohn Z. Trypanosoma cruzi: mechanism of entry and intracellular fate in mammalian cells. J Exp Med. 1976 Jun 1;143(6):1402–1420. doi: 10.1084/jem.143.6.1402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nogueira N., Gordon S., Cohn Z. Trypanosoma cruzi: modification of macrophage function during infection. J Exp Med. 1977 Jul 1;146(1):157–171. doi: 10.1084/jem.146.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- North R. J. The concept of the activated macrophage. J Immunol. 1978 Sep;121(3):806–809. [PMC free article] [PubMed] [Google Scholar]
- ROCKENMACHER M. Relationship of catalase activity to virulence in Pasteurella pestis. Proc Soc Exp Biol Med. 1949 May;71(1):99–101. doi: 10.3181/00379727-71-17096. [DOI] [PubMed] [Google Scholar]
- RYLEY J. F. Studies on the metabolism of the protozoa. 4. Metabolism of the parasitic flagellate Strigomonas oncopelti. Biochem J. 1955 Mar;59(3):353–361. doi: 10.1042/bj0590353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ratzan K. R., Musher D. M., Keusch G. T., Weinstein L. Correlation of increased metabolic activity, resistance to infection, enhanced phagocytosis, and inhibition of bacterial growth by macrophages from Listeria- and BCG-infected mice. Infect Immun. 1972 Apr;5(4):499–504. doi: 10.1128/iai.5.4.499-504.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Remold H. G., Katz A. B., Haber E., David J. R. Studies on migration inhibitory factor (MIF): recovery of MIF activity after purification by gel filtration and disc electrophoresis. Cell Immunol. 1970 May;1(1):133–145. doi: 10.1016/0008-8749(70)90066-3. [DOI] [PubMed] [Google Scholar]
- Remold H. G., Mednis A. D. Two migration inhibitory factors with different chromatographic behavior and isoelectric points. J Immunol. 1977 Jun;118(6):2015–2019. [PubMed] [Google Scholar]
- Rocklin R. E., Remold H. G., David J. R. Characterization of human migration inhibitory factor (MIF) from antigen-stimulated lymphocytes. Cell Immunol. 1972 Nov;5(3):436–445. doi: 10.1016/0008-8749(72)90070-6. [DOI] [PubMed] [Google Scholar]
- Rocklin R. E., Winston C. T., David J. R. Activation of human blood monocytes by products of sensitized lymphocytes. J Clin Invest. 1974 Feb;53(2):559–564. doi: 10.1172/JCI107590. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Root R. K., Metcalf J., Oshino N., Chance B. H2O2 release from human granulocytes during phagocytosis. I. Documentation, quantitation, and some regulating factors. J Clin Invest. 1975 May;55(5):945–955. doi: 10.1172/JCI108024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sorg C., Klinkert W. Chemical characterization of products of activated lymphocytes. Fed Proc. 1978 Nov;37(13):2748–2753. [PubMed] [Google Scholar]
- Steinman R. M., Brodie S. E., Cohn Z. A. Membrane flow during pinocytosis. A stereologic analysis. J Cell Biol. 1976 Mar;68(3):665–687. doi: 10.1083/jcb.68.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thorne K. J., Svvennsen R. J., Franks D. Role of hydrogen peroxide and peroxidase in the cytotoxicity of Trypanosoma dionisii by human granulocytes. Infect Immun. 1978 Sep;21(3):798–805. doi: 10.1128/iai.21.3.798-805.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsan M. F. Stimulation of the hexose monophosphate shunt independent of hydrogen peroxide and superoxide production in rabbit alveolar macrophages during phagocytosis. Blood. 1977 Nov;50(5):935–945. [PubMed] [Google Scholar]