Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1984 Mar 1;159(3):812–827. doi: 10.1084/jem.159.3.812

Biological and antigenic similarities of murine interferon-gamma and macrophage-activating factor

PMCID: PMC2187242  PMID: 6421982

Abstract

Murine peritoneal exudate cells (PEC) treated with murine recombinant interferon-gamma (IFN-gamma) (greater than 99% estimated purity), or concanavalin A-stimulated spleen cell supernatants developed tumoricidal properties (macrophage activation factor [MAF] activity). MAF activity was found to occur with treatments of 10 U/ml IFN-gamma, and at levels as low as 1 U/ml IFN-gamma if a second signal (5 ng/ml endotoxin) was present in the MAF assay. Endotoxin (lipopolysaccharide [LPS]) alone at these levels failed to induce MAF; induction of MAF was observed at 1,000-fold greater levels. The ability of IFN-gamma to stimulate murine PEC was species specific. Various sources of materials that displayed MAF activity, including supernatants from interleukin 2- dependent cloned cytotoxic murine T lymphocyte lines that did not display detectable antiviral activity, were neutralized by antibody raised and affinity purified against recombinant IFN-gamma. Thus, IFN- gamma, although never detectable by antiviral assays, appears to be present in many lymphokine preparations and has potent macrophage activation capability.

Full Text

The Full Text of this article is available as a PDF (975.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bahr G. M., Rook G. A., Moreno E., Lydyard P. M., Modabber F. Z., Stanford J. L. Use of the ELISA to screen for anti-thymocyte and anti-beta 2-microglobulin antibodies in leprosy and SLE. Immunology. 1980 Dec;41(4):865–873. [PMC free article] [PubMed] [Google Scholar]
  2. Chapman H. A., Jr, Hibbs J. B., Jr Modulation of macrophage tumoricidal capability by components of normal serum: a central role for lipid. Science. 1977 Jul 15;197(4300):282–285. doi: 10.1126/science.195338. [DOI] [PubMed] [Google Scholar]
  3. David J. R. Macrophage activation by lymphocyte mediators. Fed Proc. 1975 Jul;34(8):1730–1736. [PubMed] [Google Scholar]
  4. Eifel P. J., Walker S. M., Lucas Z. J. Standardization of a sensitive and rapid assay for lymphotoxin. Cell Immunol. 1975 Jan;15(1):208–221. doi: 10.1016/0008-8749(75)90176-8. [DOI] [PubMed] [Google Scholar]
  5. Erickson K. L., Cicurel L., Gruys E., Fidler I. J. Murine T-cell hybridomas that produce lymphokine with macrophage-activating factor activity as a constitutive product. Cell Immunol. 1982 Sep 1;72(1):195–201. doi: 10.1016/0008-8749(82)90297-0. [DOI] [PubMed] [Google Scholar]
  6. Evans R., Alexander P. Cooperation of immune lymphoid cells with macrophages in tumour immunity. Nature. 1970 Nov 14;228(5272):620–622. doi: 10.1038/228620a0. [DOI] [PubMed] [Google Scholar]
  7. Fidler I. J. Activation in vitro of mouse macrophages by syngeneic, allogeneic, or xenogeneic lymphocyte supernatants. J Natl Cancer Inst. 1975 Nov;55(5):1159–1163. doi: 10.1093/jnci/55.5.1159. [DOI] [PubMed] [Google Scholar]
  8. Fidler I. J. Recognition and destruction of target cells by tumoricidal macrophages. Isr J Med Sci. 1978 Jan;14(1):177–191. [PubMed] [Google Scholar]
  9. Fox R. A., Rajaraman K. Endotoxin and macrophage-migration inhibition. Cell Immunol. 1980 Aug 1;53(2):333–340. doi: 10.1016/0008-8749(80)90333-0. [DOI] [PubMed] [Google Scholar]
  10. Gray P. W., Goeddel D. V. Cloning and expression of murine immune interferon cDNA. Proc Natl Acad Sci U S A. 1983 Oct;80(19):5842–5846. doi: 10.1073/pnas.80.19.5842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hamburg S. I., Fleit H. B., Unkeless J. C., Rabinovitch M. Mononuclear phagocytes: responders to and producers of interferon. Ann N Y Acad Sci. 1980;350:72–90. doi: 10.1111/j.1749-6632.1980.tb20609.x. [DOI] [PubMed] [Google Scholar]
  12. Hand W. L., King N. L., Johnson J. D., Lowe D. A. Requirement for magnesium influx in activation of alveolar macrophages mediated by ionophore A23187. Nature. 1977 Feb 10;265(5594):543–544. doi: 10.1038/265543a0. [DOI] [PubMed] [Google Scholar]
  13. Hibbs J. B., Jr, Taintor R. R., Chapman H. A., Jr, Weinberg J. B. Macrophage tumor killing: influence of the local environment. Science. 1977 Jul 15;197(4300):279–282. doi: 10.1126/science.327547. [DOI] [PubMed] [Google Scholar]
  14. Jones C. M., Varesio L., Herberman R. B., Pestka S. Interferon activates macrophages to produce plasminogen activator. J Interferon Res. 1982;2(3):377–386. doi: 10.1089/jir.1982.2.377. [DOI] [PubMed] [Google Scholar]
  15. Kleinschmidt W. J., Schultz R. M. Similarities of murine gamma interferon and the lymphokine that renders macrophages cytotoxic. J Interferon Res. 1982;2(2):291–299. doi: 10.1089/jir.1982.2.291. [DOI] [PubMed] [Google Scholar]
  16. Kunkel L. A., Welsh R. M. Metabolic inhibitors render "resistant" target cells sensitive to natural killer cell-mediated lysis. Int J Cancer. 1981 Jan 15;27(1):73–79. doi: 10.1002/ijc.2910270112. [DOI] [PubMed] [Google Scholar]
  17. Levin J., Tomasulo P. A., Oser R. S. Detection of endotoxin in human blood and demonstration of an inhibitor. J Lab Clin Med. 1970 Jun;75(6):903–911. [PubMed] [Google Scholar]
  18. Nacy C. A., Leonard E. J., Meltzer M. S. Macrophages in resistance to rickettsial infections: characterization of lymphokines that induce rickettsiacidal activity in macrophages. J Immunol. 1981 Jan;126(1):204–207. [PubMed] [Google Scholar]
  19. Nathan C. F., Murray H. W., Wiebe M. E., Rubin B. Y. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983 Sep 1;158(3):670–689. doi: 10.1084/jem.158.3.670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Norbury K. C., Fidler I. J. In vitro tumor cell destruction by syngeneic mouse macrophoages: methods for assaying cytotoxicity. J Immunol Methods. 1975 Apr;7(1):109–122. doi: 10.1016/0022-1759(75)90136-2. [DOI] [PubMed] [Google Scholar]
  21. Onozaki K., Takenawa T., Homma Y., Hashimoto T. The mechanism of macrophage activation induced by Ca2+ ionophore. Cell Immunol. 1983 Feb 1;75(2):242–254. doi: 10.1016/0008-8749(83)90323-4. [DOI] [PubMed] [Google Scholar]
  22. Ostrove J. M., Gifford G. E. Stimulation of RNA synthesis in L-929 cells by rabbit tumor necrosis factor. Proc Soc Exp Biol Med. 1979 Mar;160(3):354–358. doi: 10.3181/00379727-160-40449. [DOI] [PubMed] [Google Scholar]
  23. Pace J. L., Russell S. W. Activation of mouse macrophages for tumor cell killing. I. Quantitative analysis of interactions between lymphokine and lipopolysaccharide. J Immunol. 1981 May;126(5):1863–1867. [PubMed] [Google Scholar]
  24. Pace J. L., Russell S. W., Schreiber R. D., Altman A., Katz D. H. Macrophage activation: priming activity from a T-cell hybridoma is attributable to interferon-gamma. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3782–3786. doi: 10.1073/pnas.80.12.3782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pace J. L., Russell S. W., Torres B. A., Johnson H. M., Gray P. W. Recombinant mouse gamma interferon induces the priming step in macrophage activation for tumor cell killing. J Immunol. 1983 May;130(5):2011–2013. [PubMed] [Google Scholar]
  26. Palladino M. A., Obata Y., Stockert E., Oettgen H. F. Characterization of interleukin 2-dependent cytotoxic T-cell clones: specificity, cell surface phenotype, and susceptibility to blocking by Lyt antisera. Cancer Res. 1983 Feb;43(2):572–576. [PubMed] [Google Scholar]
  27. Palladino M. A., von Wussow P., Pearlstein K. T., Welte K., Scheid M. P. Characterization of interleukin 2-dependent cytotoxic T-cell clones. IV. Production of alpha, beta and gamma interferons and interleukin 2 by Lyt-2+ T cells. Cell Immunol. 1983 Oct 15;81(2):313–322. doi: 10.1016/0008-8749(83)90239-3. [DOI] [PubMed] [Google Scholar]
  28. Pearlstein K. T., Palladino M. A., Stone-Wolff D. S., Oettgen H. F., Vilcek J. Coproduction of interleukin-2 and interferon-gamma in human mononuclear cells. J Biol Response Mod. 1983;2(1):81–91. [PubMed] [Google Scholar]
  29. Pearlstein K. T., Staiano-Coico L., Miller R. A., Pelus L. M., Kirch M. E., Stutman O., Palladino M. A. Multiple lymphokine production by a phorbol ester-stimulated mouse thymoma: relationship to cell cycle events. J Natl Cancer Inst. 1983 Sep;71(3):583–590. [PubMed] [Google Scholar]
  30. Pick E., Seger M., Honig S., Griffel B. Intracellular mediation of lymphokine action: mimicry of migration inhibitory factor (MIF) action by phorbol myristate acetate (PMA) and the ionophore A23187. Ann N Y Acad Sci. 1979;332:378–394. doi: 10.1111/j.1749-6632.1979.tb47132.x. [DOI] [PubMed] [Google Scholar]
  31. Pike M. C., Snyderman R. Depression of macrophage function by a factor produced by neoplasms: a merchanism for abrogation of immune surveillance. J Immunol. 1976 Oct;117(4):1243–1249. [PubMed] [Google Scholar]
  32. Roberts W. K., Vasil A. Evidence for the identity of murine gamma interferon and macrophage activating factor. J Interferon Res. 1982;2(4):519–532. doi: 10.1089/jir.1982.2.519. [DOI] [PubMed] [Google Scholar]
  33. Schreiber R. D., Pace J. L., Russell S. W., Altman A., Katz D. H. Macrophage-activating factor produced by a T cell hybridoma: physiochemical and biosynthetic resemblance to gamma-interferon. J Immunol. 1983 Aug;131(2):826–832. [PubMed] [Google Scholar]
  34. Schultz R. M., Chirigos M. A. Similarities among factors that render macrophages tumoricidal in lymphokine and interferon preparations. Cancer Res. 1978 Apr;38(4):1003–1007. [PubMed] [Google Scholar]
  35. Schultz R. M., Chirigos M. A., Stoychkov J. N., Pavlidis N. A. Factors affecting macrophage cytotoxic activity with particular emphasis on corticosteroids and acute stress. J Reticuloendothel Soc. 1979 Jul;26(1):83–92. [PubMed] [Google Scholar]
  36. Schultz R. M., Pavlidis N. A., Stylos W. A., Chirigos M. A. Regulation of macrophage tumoricidal function: a role for prostaglandins of the E series. Science. 1978 Oct 20;202(4365):320–321. doi: 10.1126/science.694537. [DOI] [PubMed] [Google Scholar]
  37. Schultz R. M. Synergistic activation of macrophages by lymphokine and lipopolysaccharide: evidence for lymphokine as the primer and interferon as the trigger. J Interferon Res. 1982;2(4):459–466. doi: 10.1089/jir.1982.2.459. [DOI] [PubMed] [Google Scholar]
  38. Staehelin T., Hobbs D. S., Kung H., Lai C. Y., Pestka S. Purification and characterization of recombinant human leukocyte interferon (IFLrA) with monoclonal antibodies. J Biol Chem. 1981 Sep 25;256(18):9750–9754. [PubMed] [Google Scholar]
  39. Steeg P. S., Moore R. N., Johnson H. M., Oppenheim J. J. Regulation of murine macrophage Ia antigen expression by a lymphokine with immune interferon activity. J Exp Med. 1982 Dec 1;156(6):1780–1793. doi: 10.1084/jem.156.6.1780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Steeg P. S., Moore R. N., Oppenheim J. J. Regulation of murine macrophage Ia-antigen expression by products of activated spleen cells. J Exp Med. 1980 Dec 1;152(6):1734–1744. doi: 10.1084/jem.152.6.1734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Taramelli D., Holden H. T., Varesio L. Endotoxin requirement for macrophage activation by lymphokines in a rapid microcytotoxicity assay. J Immunol Methods. 1980;37(3-4):225–232. doi: 10.1016/0022-1759(80)90309-9. [DOI] [PubMed] [Google Scholar]
  42. Weck P. K., Apperson S., Stebbing N., Gray P. W., Leung D., Shepard H. M., Goeddel D. V. Antiviral activities of hybrids of two major human leukocyte interferons. Nucleic Acids Res. 1981 Nov 25;9(22):6153–6166. doi: 10.1093/nar/9.22.6153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Weck P. K., Rinderknecht E., Estell D. A., Stebbing N. Antiviral activity of bacteria-derived human alpha interferons against encephalomyocarditis virus infection of mice. Infect Immun. 1982 Feb;35(2):660–665. doi: 10.1128/iai.35.2.660-665.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES