Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1984 Jun 1;159(6):1567–1575. doi: 10.1084/jem.159.6.1567

Identification of a strain-specific malarial antigen exposed on the surface of Plasmodium falciparum-infected erythrocytes

PMCID: PMC2187322  PMID: 6374009

Abstract

We have identified strain-specific antigens with Camp and St. Lucia strains of P. falciparum of Mr approximately 285,000 and approximately 260,000, respectively. These strain-specific antigens were metabolically labeled with radioactive amino acids, indicating that they were of parasite origin rather than altered host components. These proteins had the properties of a molecule exposed on the surface of infected erythrocytes (IE). First, the proteins are accessible to lactoperoxidase-catalyzed radioiodination of IE. Second, the radioiodinated proteins were cleaved by low concentrations of trypsin (0.1 microgram/ml). Third, these antigens were immunoprecipitated after addition of immune sera to intact IE. Fourth, the strain-specific immuno-precipitation of these proteins correlated with the capacity of immune sera to block cytoadherence of IE in a strain-specific fashion. Fifth, the strain-specific antigen had detergent solubility properties (i.e., insolubility in 1% Triton X-100, solubility in 5% sodium dodecyl sulfate) similar to the variant antigen of P. knowlesi, which has been proven to be a malarial protein exposed on the erythrocyte surface.

Full Text

The Full Text of this article is available as a PDF (874.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aikawa M., Miller L. H., Rabbege J. Caveola--vesicle complexes in the plasmalemma of erythrocytes infected by Plasmodium vivax and P cynomolgi. Unique structures related to Schüffner's dots. Am J Pathol. 1975 May;79(2):285–300. [PMC free article] [PubMed] [Google Scholar]
  2. Brown K. N., Brown I. N. Immunity to malaria: antigenic variation in chronic infections of Plasmodium knowlesi. Nature. 1965 Dec 25;208(5017):1286–1288. doi: 10.1038/2081286a0. [DOI] [PubMed] [Google Scholar]
  3. David P. H., Hommel M., Miller L. H., Udeinya I. J., Oligino L. D. Parasite sequestration in Plasmodium falciparum malaria: spleen and antibody modulation of cytoadherence of infected erythrocytes. Proc Natl Acad Sci U S A. 1983 Aug;80(16):5075–5079. doi: 10.1073/pnas.80.16.5075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hommel M., David P. H., Oligino L. D. Surface alterations of erythrocytes in Plasmodium falciparum malaria. Antigenic variation, antigenic diversity, and the role of the spleen. J Exp Med. 1983 Apr 1;157(4):1137–1148. doi: 10.1084/jem.157.4.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Howard R. J., Barnwell J. W., Kao V. Antigenic variation of Plasmodium knowlesi malaria: identification of the variant antigen on infected erythrocytes. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4129–4133. doi: 10.1073/pnas.80.13.4129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Howard R. J., Barnwell J. W., Kao V., Daniel W. A., Aley S. B. Radioiodination of new protein antigens on the surface of Plasmodium knowlesi schizont-infected erythrocytes. Mol Biochem Parasitol. 1982 Dec;6(6):343–367. doi: 10.1016/0166-6851(82)90024-x. [DOI] [PubMed] [Google Scholar]
  7. Laemmli U. K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol. 1973 Nov 15;80(4):575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
  8. Langreth S. G., Reese R. T. Antigenicity of the infected-erythrocyte and merozoite surfaces in Falciparum malaria. J Exp Med. 1979 Nov 1;150(5):1241–1254. doi: 10.1084/jem.150.5.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Luse S. A., Miller L. H. Plasmodium falciparum malaria. Ultrastructure of parasitized erythrocytes in cardiac vessels. Am J Trop Med Hyg. 1971 Sep;20(5):655–660. [PubMed] [Google Scholar]
  10. Miller L. H., Hudson D., Rener J., Taylor D., Hadley T. J., Zilberstein D. A monoclonal antibody to rhesus erythrocyte band 3 inhibits invasion by malaria (Plasmodium knowlesi) merozoites. J Clin Invest. 1983 Oct;72(4):1357–1364. doi: 10.1172/JCI111092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Schmidt J. A., Udeinya I. J., Leech J. H., Hay R. J., Aikawa M., Barnwell J., Green I., Miller L. H. Plasmodium falciparum malaria. An amelanotic melanoma cell line bears receptors for the knob ligand on infected erythrocytes. J Clin Invest. 1982 Aug;70(2):379–386. doi: 10.1172/JCI110627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sheetz M. P. Integral membrane protein interaction with Triton cytoskeletons of erythrocytes. Biochim Biophys Acta. 1979 Oct 19;557(1):122–134. doi: 10.1016/0005-2736(79)90095-6. [DOI] [PubMed] [Google Scholar]
  13. Trager W., Jensen J. B. Human malaria parasites in continuous culture. Science. 1976 Aug 20;193(4254):673–675. doi: 10.1126/science.781840. [DOI] [PubMed] [Google Scholar]
  14. Udeinya I. J., Miller L. H., McGregor I. A., Jensen J. B. Plasmodium falciparum strain-specific antibody blocks binding of infected erythrocytes to amelanotic melanoma cells. Nature. 1983 Jun 2;303(5916):429–431. doi: 10.1038/303429a0. [DOI] [PubMed] [Google Scholar]
  15. Udeinya I. J., Schmidt J. A., Aikawa M., Miller L. H., Green I. Falciparum malaria-infected erythrocytes specifically bind to cultured human endothelial cells. Science. 1981 Jul 31;213(4507):555–557. doi: 10.1126/science.7017935. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES