Abstract
p95vav, the product of the vav protooncogene, has been implicated in the T cell receptor (TCR)-mediated signaling cascade p95vav is phosphorylated on tyrosine residues after TCR stimulation by anti- TCR/CD3 antibodies and possesses a number of landmark features of signaling molecules such as a putative guanine nucleotide exchange factor domain, a pleckstrin homology domain, and an Sre homology (SH) 2 and two SH3 domains, which provide the capacity to form multimeric signaling complexes. However, the precise role of p95vav in TCR signaling remains unclear. In this work we show that physiological stimulation of T cell hybridomas with antigen presented by major histocompatibility complex class II molecules leads to a strong tyrosine phosphorylation of p95vav and its association with tyrosine- phosphorylated SLP-76. SLP-76 is a newly described SH2-containing protein that has been previously found to bind to the adapter molecule Grb2. Moreover, we provide evidence that p95vav-SI P-76 association is SH2-mediated by demonstrating that this interaction can be inhibited by a phosphopeptide containing a putative p95vav-SH2-binding motif (pYESP) present in SLP-76. Furthermore, in vitro experiments show that after antigen stimulation, phosphorylated p95vav-SLP-76 can bind to Grb2 in a complex that contains pp36/38 and pp116 proteins. Our data provide a clue to explain recent independent observations that overexpression of p95vav or SLP-76 enhances TCR-mediated gene activation.
Full Text
The Full Text of this article is available as a PDF (816.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blank U., Boitel B., Mège D., Ermonval M., Acuto O. Analysis of tetanus toxin peptide/DR recognition by human T cell receptors reconstituted into a murine T cell hybridoma. Eur J Immunol. 1993 Dec;23(12):3057–3065. doi: 10.1002/eji.1830231203. [DOI] [PubMed] [Google Scholar]
- Buday L., Egan S. E., Rodriguez Viciana P., Cantrell D. A., Downward J. A complex of Grb2 adaptor protein, Sos exchange factor, and a 36-kDa membrane-bound tyrosine phosphoprotein is implicated in ras activation in T cells. J Biol Chem. 1994 Mar 25;269(12):9019–9023. [PubMed] [Google Scholar]
- Bustelo X. R., Barbacid M. Tyrosine phosphorylation of the vav proto-oncogene product in activated B cells. Science. 1992 May 22;256(5060):1196–1199. doi: 10.1126/science.256.5060.1196. [DOI] [PubMed] [Google Scholar]
- Bustelo X. R., Suen K. L., Leftheris K., Meyers C. A., Barbacid M. Vav cooperates with Ras to transform rodent fibroblasts but is not a Ras GDP/GTP exchange factor. Oncogene. 1994 Aug;9(8):2405–2413. [PubMed] [Google Scholar]
- Fischer K. D., Zmuldzinas A., Gardner S., Barbacid M., Bernstein A., Guidos C. Defective T-cell receptor signalling and positive selection of Vav-deficient CD4+ CD8+ thymocytes. Nature. 1995 Mar 30;374(6521):474–477. doi: 10.1038/374474a0. [DOI] [PubMed] [Google Scholar]
- Gulbins E., Coggeshall K. M., Baier G., Katzav S., Burn P., Altman A. Tyrosine kinase-stimulated guanine nucleotide exchange activity of Vav in T cell activation. Science. 1993 May 7;260(5109):822–825. doi: 10.1126/science.8484124. [DOI] [PubMed] [Google Scholar]
- Gupta S., Weiss A., Kumar G., Wang S., Nel A. The T-cell antigen receptor utilizes Lck, Raf-1, and MEK-1 for activating mitogen-activated protein kinase. Evidence for the existence of a second protein kinase C-dependent pathway in an Lck-negative Jurkat cell mutant. J Biol Chem. 1994 Jun 24;269(25):17349–17357. [PubMed] [Google Scholar]
- Holsinger L. J., Spencer D. M., Austin D. J., Schreiber S. L., Crabtree G. R. Signal transduction in T lymphocytes using a conditional allele of Sos. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9810–9814. doi: 10.1073/pnas.92.21.9810. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang X., Li Y., Tanaka K., Moore K. G., Hayashi J. I. Cloning and characterization of Lnk, a signal transduction protein that links T-cell receptor activation signal to phospholipase C gamma 1, Grb2, and phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11618–11622. doi: 10.1073/pnas.92.25.11618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Izquierdo Pastor M., Reif K., Cantrell D. The regulation and function of p21ras during T-cell activation and growth. Immunol Today. 1995 Mar;16(3):159–164. doi: 10.1016/0167-5699(95)80134-0. [DOI] [PubMed] [Google Scholar]
- Jackman J. K., Motto D. G., Sun Q., Tanemoto M., Turck C. W., Peltz G. A., Koretzky G. A., Findell P. R. Molecular cloning of SLP-76, a 76-kDa tyrosine phosphoprotein associated with Grb2 in T cells. J Biol Chem. 1995 Mar 31;270(13):7029–7032. doi: 10.1074/jbc.270.13.7029. [DOI] [PubMed] [Google Scholar]
- Katzav S., Martin-Zanca D., Barbacid M. vav, a novel human oncogene derived from a locus ubiquitously expressed in hematopoietic cells. EMBO J. 1989 Aug;8(8):2283–2290. doi: 10.1002/j.1460-2075.1989.tb08354.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katzav S., Sutherland M., Packham G., Yi T., Weiss A. The protein tyrosine kinase ZAP-70 can associate with the SH2 domain of proto-Vav. J Biol Chem. 1994 Dec 23;269(51):32579–32585. [PubMed] [Google Scholar]
- Khosravi-Far R., Chrzanowska-Wodnicka M., Solski P. A., Eva A., Burridge K., Der C. J. Dbl and Vav mediate transformation via mitogen-activated protein kinase pathways that are distinct from those activated by oncogenic Ras. Mol Cell Biol. 1994 Oct;14(10):6848–6857. doi: 10.1128/mcb.14.10.6848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klohe E. P., Watts R., Bahl M., Alber C., Yu W. Y., Anderson R., Silver J., Gregersen P. K., Karr R. W. Analysis of the molecular specificities of anti-class II monoclonal antibodies by using L cell transfectants expressing HLA class II molecules. J Immunol. 1988 Sep 15;141(6):2158–2164. [PubMed] [Google Scholar]
- Laudanna C., Campbell J. J., Butcher E. C. Role of Rho in chemoattractant-activated leukocyte adhesion through integrins. Science. 1996 Feb 16;271(5251):981–983. doi: 10.1126/science.271.5251.981. [DOI] [PubMed] [Google Scholar]
- Margolis B., Hu P., Katzav S., Li W., Oliver J. M., Ullrich A., Weiss A., Schlessinger J. Tyrosine phosphorylation of vav proto-oncogene product containing SH2 domain and transcription factor motifs. Nature. 1992 Mar 5;356(6364):71–74. doi: 10.1038/356071a0. [DOI] [PubMed] [Google Scholar]
- Motto D. G., Ross S. E., Jackman J. K., Sun Q., Olson A. L., Findell P. R., Koretzky G. A. In vivo association of Grb2 with pp116, a substrate of the T cell antigen receptor-activated protein tyrosine kinase. J Biol Chem. 1994 Aug 26;269(34):21608–21613. [PubMed] [Google Scholar]
- Motto D. G., Ross S. E., Wu J., Hendricks-Taylor L. R., Koretzky G. A. Implication of the GRB2-associated phosphoprotein SLP-76 in T cell receptor-mediated interleukin 2 production. J Exp Med. 1996 Apr 1;183(4):1937–1943. doi: 10.1084/jem.183.4.1937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nunès J. A., Truneh A., Olive D., Cantrell D. A. Signal transduction by CD28 costimulatory receptor on T cells. B7-1 and B7-2 regulation of tyrosine kinase adaptor molecules. J Biol Chem. 1996 Jan 19;271(3):1591–1598. doi: 10.1074/jbc.271.3.1591. [DOI] [PubMed] [Google Scholar]
- Reif K., Buday L., Downward J., Cantrell D. A. SH3 domains of the adapter molecule Grb2 complex with two proteins in T cells: the guanine nucleotide exchange protein Sos and a 75-kDa protein that is a substrate for T cell antigen receptor-activated tyrosine kinases. J Biol Chem. 1994 May 13;269(19):14081–14087. [PubMed] [Google Scholar]
- Sefton B. M., Campbell M. A. The role of tyrosine protein phosphorylation in lymphocyte activation. Annu Rev Cell Biol. 1991;7:257–274. doi: 10.1146/annurev.cb.07.110191.001353. [DOI] [PubMed] [Google Scholar]
- Songyang Z., Shoelson S. E., McGlade J., Olivier P., Pawson T., Bustelo X. R., Barbacid M., Sabe H., Hanafusa H., Yi T. Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Mol Cell Biol. 1994 Apr;14(4):2777–2785. doi: 10.1128/mcb.14.4.2777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tarakhovsky A., Turner M., Schaal S., Mee P. J., Duddy L. P., Rajewsky K., Tybulewicz V. L. Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vav. Nature. 1995 Mar 30;374(6521):467–470. doi: 10.1038/374467a0. [DOI] [PubMed] [Google Scholar]
- Thome M., Duplay P., Guttinger M., Acuto O. Syk and ZAP-70 mediate recruitment of p56lck/CD4 to the activated T cell receptor/CD3/zeta complex. J Exp Med. 1995 Jun 1;181(6):1997–2006. doi: 10.1084/jem.181.6.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss A., Littman D. R. Signal transduction by lymphocyte antigen receptors. Cell. 1994 Jan 28;76(2):263–274. doi: 10.1016/0092-8674(94)90334-4. [DOI] [PubMed] [Google Scholar]
- Wu J., Katzav S., Weiss A. A functional T-cell receptor signaling pathway is required for p95vav activity. Mol Cell Biol. 1995 Aug;15(8):4337–4346. doi: 10.1128/mcb.15.8.4337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ye Z. S., Baltimore D. Binding of Vav to Grb2 through dimerization of Src homology 3 domains. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12629–12633. doi: 10.1073/pnas.91.26.12629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang R., Alt F. W., Davidson L., Orkin S. H., Swat W. Defective signalling through the T- and B-cell antigen receptors in lymphoid cells lacking the vav proto-oncogene. Nature. 1995 Mar 30;374(6521):470–473. doi: 10.1038/374470a0. [DOI] [PubMed] [Google Scholar]