Abstract
Measurements have been made of the permeability of the isolated urinary bladder of the toad to a number of small solute molecules, in the presence and absence of vasopressin. Vasopressin has a strikingly specific effect on increasing permeability of the bladder to a group of small, uncharged amides and alcohols while penetration by other small molecules and ions is unaffected. The movement of urea is passive, as indicated by equal flux rates in the two directions. The reflection coefficients for chloride and thiourea indicate a high degree of impermeability of the bladder to these solutes even in the presence of large net movements of water. The low concentration of thiourea in the tissue water when this compound is added to the mucosal bathing medium indicates that the major permeability barrier to thiourea is at the mucosal surface of the bladder. The findings can be accounted for by a double permeability barrier consisting of a fine selective diffusion barrier and a porous barrier in series. The former would constitute the permeability barrier to most small solutes while the latter would be the rate-limiting barrier for water and the amides. It would be the porous barrier which is affected by vasopressin. Reasons are presented which require both barriers to be contained in or near the plasma membrane at the mucosal surface of the bladder.
Full Text
The Full Text of this article is available as a PDF (704.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- HAYS R. M., LEAF A. Studies on the movement of water through the isolated toad bladder and its modification by vasopressin. J Gen Physiol. 1962 May;45:905–919. doi: 10.1085/jgp.45.5.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KOEFOED-JOHNSEN V., USSING H. H. The contributions of diffusion and flow to the passage of D2O through living membranes; effect of neurohypophyseal hormone on isolated anuran skin. Acta Physiol Scand. 1953 Mar 31;28(1):60–76. doi: 10.1111/j.1748-1716.1953.tb00959.x. [DOI] [PubMed] [Google Scholar]
- LEAF A., ANDERSON J., PAGE L. B. Active sodium transport by the isolated toad bladder. J Gen Physiol. 1958 Mar 20;41(4):657–668. doi: 10.1085/jgp.41.4.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEAF A., DEMPSEY E. Some effects of mammalian neurohypophyseal hormones on metabolism and active transport of sodium by the isolated toad bladder. J Biol Chem. 1960 Jul;235:2160–2163. [PubMed] [Google Scholar]
- MAFFLY R. H., HAYS R. M., LAMDIN E., LEAF A. The effect of neurohypophyseal hormones on the permeability of the toad bladder to urea. J Clin Invest. 1960 Apr;39:630–641. doi: 10.1172/JCI104078. [DOI] [PMC free article] [PubMed] [Google Scholar]