Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Nov 2;123(4):921–933. doi: 10.1083/jcb.123.4.921

Human osteogenic protein-1 induces both chondroblastic and osteoblastic differentiation of osteoprogenitor cells derived from newborn rat calvaria

PMCID: PMC2200148  PMID: 8227149

Abstract

Osteogenetic protein-1 (OP-1), a member of the TGF-beta superfamily, induces endochondrial bone formation at subcutaneous sites in vivo and stimulates osteoblastic phenotypic expression in vitro. Primary cultures of newborn rat calvarial cells contain a spectrum of osteogenic phenotypes ranging from undifferentiated mesenchymal osteoprogenitor cells to parathyroid hormone (PTH)-responsive osteoblasts. We examined whether treatment of this cell population with recombinant human osteogenic protein-1 could induce chondrogenesis in vitro. Markers of chondroblastic versus osteoblastic differentiation included alcian blue staining at pH 1, alkaline phosphatase-specific activity, osteocalcin radioimmunoassay, and expression of collagen mRNAs. 6 d of treatment (culture days 1-7) with 4-100 ng OP-1/ml caused dose-dependent increases in alcian blue staining intensity and alkaline phosphatase activity (4.7- and 3.4-fold, respectively, at 40 ng/ml), while osteocalcin production decreased twofold. Clusters of round, refractile, alcian blue-stained cells appeared by day 3, increased in number until day 7, and then became hypertrophic and gradually became less distinct. Histochemically, the day 7 clusters were associated with high alkaline phosphatase activity and became mineralized. mRNA transcripts for collagen types II and IX were increased by OP-1, peaking at day 4, while type X collagen mRNA was detectable only on day 7 in OP-1-treated cultures. Delay of OP-1 exposure until confluence (day 7) amplifies expression of the normal osteoblastic phenotype and accelerates its developmental maturation. In contrast, early OP-1 treatment commencing on day 1 strongly amplifies chondroblastic differentiation. In the same protocol, TGF-beta 1 alone at 0.01-40 ng/ml fails to induce any hypertrophic chondrocytes, and in combination with OP-1, TGF-beta 1 blocks OP-1-dependent chondroinduction. OP-1 is believed to act on a subpopulation of primitive osteoprogenitor cells to induce endochondrial ossification, but does not appear to reverse committed osteoblasts to the chondrocyte phenotype.

Full Text

The Full Text of this article is available as a PDF (4.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronow M. A., Gerstenfeld L. C., Owen T. A., Tassinari M. S., Stein G. S., Lian J. B. Factors that promote progressive development of the osteoblast phenotype in cultured fetal rat calvaria cells. J Cell Physiol. 1990 May;143(2):213–221. doi: 10.1002/jcp.1041430203. [DOI] [PubMed] [Google Scholar]
  2. Bellows C. G., Aubin J. E. Determination of numbers of osteoprogenitors present in isolated fetal rat calvaria cells in vitro. Dev Biol. 1989 May;133(1):8–13. doi: 10.1016/0012-1606(89)90291-1. [DOI] [PubMed] [Google Scholar]
  3. Bellows C. G., Aubin J. E., Heersche J. N., Antosz M. E. Mineralized bone nodules formed in vitro from enzymatically released rat calvaria cell populations. Calcif Tissue Int. 1986 Mar;38(3):143–154. doi: 10.1007/BF02556874. [DOI] [PubMed] [Google Scholar]
  4. Bernier S. M., Desjardins J., Sullivan A. K., Goltzman D. Establishment of an osseous cell line from fetal rat calvaria using an immunocytolytic method of cell selection: characterization of the cell line and of derived clones. J Cell Physiol. 1990 Nov;145(2):274–285. doi: 10.1002/jcp.1041450212. [DOI] [PubMed] [Google Scholar]
  5. Berry L., Grant M. E., McClure J., Rooney P. Bone-marrow-derived chondrogenesis in vitro. J Cell Sci. 1992 Feb;101(Pt 2):333–342. doi: 10.1242/jcs.101.2.333. [DOI] [PubMed] [Google Scholar]
  6. Carrington J. L., Chen P., Yanagishita M., Reddi A. H. Osteogenin (bone morphogenetic protein-3) stimulates cartilage formation by chick limb bud cells in vitro. Dev Biol. 1991 Aug;146(2):406–415. doi: 10.1016/0012-1606(91)90242-u. [DOI] [PubMed] [Google Scholar]
  7. Celeste A. J., Iannazzi J. A., Taylor R. C., Hewick R. M., Rosen V., Wang E. A., Wozney J. M. Identification of transforming growth factor beta family members present in bone-inductive protein purified from bovine bone. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9843–9847. doi: 10.1073/pnas.87.24.9843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Centrella M., McCarthy T. L., Canalis E. Transforming growth factor beta is a bifunctional regulator of replication and collagen synthesis in osteoblast-enriched cell cultures from fetal rat bone. J Biol Chem. 1987 Feb 25;262(6):2869–2874. [PubMed] [Google Scholar]
  9. Cheah K. S., Lau E. T., Au P. K., Tam P. P. Expression of the mouse alpha 1(II) collagen gene is not restricted to cartilage during development. Development. 1991 Apr;111(4):945–953. doi: 10.1242/dev.111.4.945. [DOI] [PubMed] [Google Scholar]
  10. Chen P., Carrington J. L., Hammonds R. G., Reddi A. H. Stimulation of chondrogenesis in limb bud mesoderm cells by recombinant human bone morphogenetic protein 2B (BMP-2B) and modulation by transforming growth factor beta 1 and beta 2. Exp Cell Res. 1991 Aug;195(2):509–515. doi: 10.1016/0014-4827(91)90403-h. [DOI] [PubMed] [Google Scholar]
  11. Chen T. L., Bates R. L., Dudley A., Hammonds R. G., Jr, Amento E. P. Bone morphogenetic protein-2b stimulation of growth and osteogenic phenotypes in rat osteoblast-like cells: comparison with TGF-beta 1. J Bone Miner Res. 1991 Dec;6(12):1387–1393. doi: 10.1002/jbmr.5650061216. [DOI] [PubMed] [Google Scholar]
  12. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  13. Franceschi R. T., Iyer B. S. Relationship between collagen synthesis and expression of the osteoblast phenotype in MC3T3-E1 cells. J Bone Miner Res. 1992 Feb;7(2):235–246. doi: 10.1002/jbmr.5650070216. [DOI] [PubMed] [Google Scholar]
  14. Genovese C., Rowe D., Kream B. Construction of DNA sequences complementary to rat alpha 1 and alpha 2 collagen mRNA and their use in studying the regulation of type I collagen synthesis by 1,25-dihydroxyvitamin D. Biochemistry. 1984 Dec 4;23(25):6210–6216. doi: 10.1021/bi00320a049. [DOI] [PubMed] [Google Scholar]
  15. Gerstenfeld L. C., Chipman S. D., Glowacki J., Lian J. B. Expression of differentiated function by mineralizing cultures of chicken osteoblasts. Dev Biol. 1987 Jul;122(1):49–60. doi: 10.1016/0012-1606(87)90331-9. [DOI] [PubMed] [Google Scholar]
  16. Grigoriadis A. E., Heersche J. N., Aubin J. E. Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. J Cell Biol. 1988 Jun;106(6):2139–2151. doi: 10.1083/jcb.106.6.2139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gundberg C. M., Hauschka P. V., Lian J. B., Gallop P. M. Osteocalcin: isolation, characterization, and detection. Methods Enzymol. 1984;107:516–544. doi: 10.1016/0076-6879(84)07036-1. [DOI] [PubMed] [Google Scholar]
  18. Harrison E. T., Jr, Luyten F. P., Reddi A. H. Osteogenin promotes reexpression of cartilage phenotype by dedifferentiated articular chondrocytes in serum-free medium. Exp Cell Res. 1991 Feb;192(2):340–345. doi: 10.1016/0014-4827(91)90050-5. [DOI] [PubMed] [Google Scholar]
  19. Hauschka P. V., Mavrakos A. E., Iafrati M. D., Doleman S. E., Klagsbrun M. Growth factors in bone matrix. Isolation of multiple types by affinity chromatography on heparin-Sepharose. J Biol Chem. 1986 Sep 25;261(27):12665–12674. [PubMed] [Google Scholar]
  20. Hefley T., Cushing J., Brand J. S. Enzymatic isolation of cells from bone: cytotoxic enzymes of bacterial collagenase. Am J Physiol. 1981 May;240(5):C234–C238. doi: 10.1152/ajpcell.1981.240.5.C234. [DOI] [PubMed] [Google Scholar]
  21. Heinegård D., Paulsson M. Cartilage. Methods Enzymol. 1987;145:336–363. doi: 10.1016/0076-6879(87)45020-9. [DOI] [PubMed] [Google Scholar]
  22. Hiraki Y., Inoue H., Shigeno C., Sanma Y., Bentz H., Rosen D. M., Asada A., Suzuki F. Bone morphogenetic proteins (BMP-2 and BMP-3) promote growth and expression of the differentiated phenotype of rabbit chondrocytes and osteoblastic MC3T3-E1 cells in vitro. J Bone Miner Res. 1991 Dec;6(12):1373–1385. doi: 10.1002/jbmr.5650061215. [DOI] [PubMed] [Google Scholar]
  23. Joyce M. E., Roberts A. B., Sporn M. B., Bolander M. E. Transforming growth factor-beta and the initiation of chondrogenesis and osteogenesis in the rat femur. J Cell Biol. 1990 Jun;110(6):2195–2207. doi: 10.1083/jcb.110.6.2195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Katagiri T., Yamaguchi A., Ikeda T., Yoshiki S., Wozney J. M., Rosen V., Wang E. A., Tanaka H., Omura S., Suda T. The non-osteogenic mouse pluripotent cell line, C3H10T1/2, is induced to differentiate into osteoblastic cells by recombinant human bone morphogenetic protein-2. Biochem Biophys Res Commun. 1990 Oct 15;172(1):295–299. doi: 10.1016/s0006-291x(05)80208-6. [DOI] [PubMed] [Google Scholar]
  25. Kellermann O., Buc-Caron M. H., Marie P. J., Lamblin D., Jacob F. An immortalized osteogenic cell line derived from mouse teratocarcinoma is able to mineralize in vivo and in vitro. J Cell Biol. 1990 Jan;110(1):123–132. doi: 10.1083/jcb.110.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kivirikko K. I., Myllylä R. Recent developments in posttranslational modification: intracellular processing. Methods Enzymol. 1987;144:96–114. doi: 10.1016/0076-6879(87)44175-x. [DOI] [PubMed] [Google Scholar]
  27. Kohno K., Martin G. R., Yamada Y. Isolation and characterization of a cDNA clone for the amino-terminal portion of the pro-alpha 1(II) chain of cartilage collagen. J Biol Chem. 1984 Nov 25;259(22):13668–13673. [PubMed] [Google Scholar]
  28. Kosher R. A., Solursh M. Widespread distribution of type II collagen during embryonic chick development. Dev Biol. 1989 Feb;131(2):558–566. doi: 10.1016/s0012-1606(89)80026-0. [DOI] [PubMed] [Google Scholar]
  29. Leboy P. S., Vaias L., Uschmann B., Golub E., Adams S. L., Pacifici M. Ascorbic acid induces alkaline phosphatase, type X collagen, and calcium deposition in cultured chick chondrocytes. J Biol Chem. 1989 Oct 15;264(29):17281–17286. [PubMed] [Google Scholar]
  30. Linsenmayer T. F., Chen Q. A., Gibney E., Gordon M. K., Marchant J. K., Mayne R., Schmid T. M. Collagen types IX and X in the developing chick tibiotarsus: analyses of mRNAs and proteins. Development. 1991 Jan;111(1):191–196. doi: 10.1242/dev.111.1.191. [DOI] [PubMed] [Google Scholar]
  31. Linsenmayer T. F., Eavey R. D., Schmid T. M. Type X collagen: a hypertrophic cartilage-specific molecule. Pathol Immunopathol Res. 1988;7(1-2):14–19. doi: 10.1159/000157085. [DOI] [PubMed] [Google Scholar]
  32. Luyten F. P., Cunningham N. S., Ma S., Muthukumaran N., Hammonds R. G., Nevins W. B., Woods W. I., Reddi A. H. Purification and partial amino acid sequence of osteogenin, a protein initiating bone differentiation. J Biol Chem. 1989 Aug 15;264(23):13377–13380. [PubMed] [Google Scholar]
  33. Luyten F. P., Yu Y. M., Yanagishita M., Vukicevic S., Hammonds R. G., Reddi A. H. Natural bovine osteogenin and recombinant human bone morphogenetic protein-2B are equipotent in the maintenance of proteoglycans in bovine articular cartilage explant cultures. J Biol Chem. 1992 Feb 25;267(6):3691–3695. [PubMed] [Google Scholar]
  34. Lyons K. M., Pelton R. W., Hogan B. L. Patterns of expression of murine Vgr-1 and BMP-2a RNA suggest that transforming growth factor-beta-like genes coordinately regulate aspects of embryonic development. Genes Dev. 1989 Nov;3(11):1657–1668. doi: 10.1101/gad.3.11.1657. [DOI] [PubMed] [Google Scholar]
  35. Manduca P., Descalzi Cancedda F., Cancedda R. Chondrogenic differentiation in chick embryo osteoblast cultures. Eur J Cell Biol. 1992 Apr;57(2):193–201. [PubMed] [Google Scholar]
  36. Nakahara H., Bruder S. P., Haynesworth S. E., Holecek J. J., Baber M. A., Goldberg V. M., Caplan A. I. Bone and cartilage formation in diffusion chambers by subcultured cells derived from the periosteum. Bone. 1990;11(3):181–188. doi: 10.1016/8756-3282(90)90212-h. [DOI] [PubMed] [Google Scholar]
  37. Nishimura I., Muragaki Y., Olsen B. R. Tissue-specific forms of type IX collagen-proteoglycan arise from the use of two widely separated promoters. J Biol Chem. 1989 Nov 25;264(33):20033–20041. [PubMed] [Google Scholar]
  38. Owen T. A., Aronow M., Shalhoub V., Barone L. M., Wilming L., Tassinari M. S., Kennedy M. B., Pockwinse S., Lian J. B., Stein G. S. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol. 1990 Jun;143(3):420–430. doi: 10.1002/jcp.1041430304. [DOI] [PubMed] [Google Scholar]
  39. Ozkaynak E., Rueger D. C., Drier E. A., Corbett C., Ridge R. J., Sampath T. K., Oppermann H. OP-1 cDNA encodes an osteogenic protein in the TGF-beta family. EMBO J. 1990 Jul;9(7):2085–2093. doi: 10.1002/j.1460-2075.1990.tb07376.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Ozkaynak E., Schnegelsberg P. N., Jin D. F., Clifford G. M., Warren F. D., Drier E. A., Oppermann H. Osteogenic protein-2. A new member of the transforming growth factor-beta superfamily expressed early in embryogenesis. J Biol Chem. 1992 Dec 15;267(35):25220–25227. [PubMed] [Google Scholar]
  41. Rebagliati M. R., Weeks D. L., Harvey R. P., Melton D. A. Identification and cloning of localized maternal RNAs from Xenopus eggs. Cell. 1985 Oct;42(3):769–777. doi: 10.1016/0092-8674(85)90273-9. [DOI] [PubMed] [Google Scholar]
  42. Reddi A. H. Cell biology and biochemistry of endochondral bone development. Coll Relat Res. 1981 Feb;1(2):209–226. doi: 10.1016/s0174-173x(81)80021-0. [DOI] [PubMed] [Google Scholar]
  43. Reddi A. H., Huggins C. Biochemical sequences in the transformation of normal fibroblasts in adolescent rats. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1601–1605. doi: 10.1073/pnas.69.6.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Rifas L., Uitto J., Memoli V. A., Kuettner K. E., Henry R. W., Peck W. A. Selective emergence of differentiated chondrocytes during serum-free culture of cells derived from fetal rat calvaria. J Cell Biol. 1982 Feb;92(2):493–504. doi: 10.1083/jcb.92.2.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sabath D. E., Broome H. E., Prystowsky M. B. Glyceraldehyde-3-phosphate dehydrogenase mRNA is a major interleukin 2-induced transcript in a cloned T-helper lymphocyte. Gene. 1990 Jul 16;91(2):185–191. doi: 10.1016/0378-1119(90)90087-8. [DOI] [PubMed] [Google Scholar]
  46. Sampath T. K., Coughlin J. E., Whetstone R. M., Banach D., Corbett C., Ridge R. J., Ozkaynak E., Oppermann H., Rueger D. C. Bovine osteogenic protein is composed of dimers of OP-1 and BMP-2A, two members of the transforming growth factor-beta superfamily. J Biol Chem. 1990 Aug 5;265(22):13198–13205. [PubMed] [Google Scholar]
  47. Sampath T. K., Maliakal J. C., Hauschka P. V., Jones W. K., Sasak H., Tucker R. F., White K. H., Coughlin J. E., Tucker M. M., Pang R. H. Recombinant human osteogenic protein-1 (hOP-1) induces new bone formation in vivo with a specific activity comparable with natural bovine osteogenic protein and stimulates osteoblast proliferation and differentiation in vitro. J Biol Chem. 1992 Oct 5;267(28):20352–20362. [PubMed] [Google Scholar]
  48. San Antonio J. D., Tuan R. S. Chondrogenesis of limb bud mesenchyme in vitro: stimulation by cations. Dev Biol. 1986 Jun;115(2):313–324. doi: 10.1016/0012-1606(86)90252-6. [DOI] [PubMed] [Google Scholar]
  49. Segal D., Gelbart W. M. Shortvein, a new component of the decapentaplegic gene complex in Drosophila melanogaster. Genetics. 1985 Jan;109(1):119–143. doi: 10.1093/genetics/109.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Svoboda K. K., Nishimura I., Sugrue S. P., Ninomiya Y., Olsen B. R. Embryonic chicken cornea and cartilage synthesize type IX collagen molecules with different amino-terminal domains. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7496–7500. doi: 10.1073/pnas.85.20.7496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Swiderski R. E., Solursh M. Differential co-expression of long and short form type IX collagen transcripts during avian limb chondrogenesis in ovo. Development. 1992 May;115(1):169–179. doi: 10.1242/dev.115.1.169. [DOI] [PubMed] [Google Scholar]
  52. Swiderski R. E., Solursh M. Localization of type II collagen, long form alpha 1(IX) collagen, and short form alpha 1(IX) collagen transcripts in the developing chick notochord and axial skeleton. Dev Dyn. 1992 Jun;194(2):118–127. doi: 10.1002/aja.1001940205. [DOI] [PubMed] [Google Scholar]
  53. Takuwa Y., Ohse C., Wang E. A., Wozney J. M., Yamashita K. Bone morphogenetic protein-2 stimulates alkaline phosphatase activity and collagen synthesis in cultured osteoblastic cells, MC3T3-E1. Biochem Biophys Res Commun. 1991 Jan 15;174(1):96–101. doi: 10.1016/0006-291x(91)90490-x. [DOI] [PubMed] [Google Scholar]
  54. Thies R. S., Bauduy M., Ashton B. A., Kurtzberg L., Wozney J. M., Rosen V. Recombinant human bone morphogenetic protein-2 induces osteoblastic differentiation in W-20-17 stromal cells. Endocrinology. 1992 Mar;130(3):1318–1324. doi: 10.1210/endo.130.3.1311236. [DOI] [PubMed] [Google Scholar]
  55. Urist M. R. Bone: formation by autoinduction. Science. 1965 Nov 12;150(3698):893–899. doi: 10.1126/science.150.3698.893. [DOI] [PubMed] [Google Scholar]
  56. Vukicevic S., Luyten F. P., Reddi A. H. Osteogenin inhibits proliferation and stimulates differentiation in mouse osteoblast-like cells (MC3T3-E1). Biochem Biophys Res Commun. 1990 Jan 30;166(2):750–756. doi: 10.1016/0006-291x(90)90873-l. [DOI] [PubMed] [Google Scholar]
  57. Vukicevic S., Luyten F. P., Reddi A. H. Stimulation of the expression of osteogenic and chondrogenic phenotypes in vitro by osteogenin. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8793–8797. doi: 10.1073/pnas.86.22.8793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Vytásek R. A sensitive fluorometric assay for the determination of DNA. Anal Biochem. 1982 Mar 1;120(2):243–248. doi: 10.1016/0003-2697(82)90342-6. [DOI] [PubMed] [Google Scholar]
  59. Wang E. A., Rosen V., Cordes P., Hewick R. M., Kriz M. J., Luxenberg D. P., Sibley B. S., Wozney J. M. Purification and characterization of other distinct bone-inducing factors. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9484–9488. doi: 10.1073/pnas.85.24.9484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Wang E. A., Rosen V., D'Alessandro J. S., Bauduy M., Cordes P., Harada T., Israel D. I., Hewick R. M., Kerns K. M., LaPan P. Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2220–2224. doi: 10.1073/pnas.87.6.2220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Wong G. L., Cohn D. V. Target cells in bone for parathormone and calcitonin are different: enrichment for each cell type by sequential digestion of mouse calvaria and selective adhesion to polymeric surfaces. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3167–3171. doi: 10.1073/pnas.72.8.3167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Wozney J. M., Rosen V., Celeste A. J., Mitsock L. M., Whitters M. J., Kriz R. W., Hewick R. M., Wang E. A. Novel regulators of bone formation: molecular clones and activities. Science. 1988 Dec 16;242(4885):1528–1534. doi: 10.1126/science.3201241. [DOI] [PubMed] [Google Scholar]
  63. Yamaguchi A., Kahn A. J. Clonal osteogenic cell lines express myogenic and adipocytic developmental potential. Calcif Tissue Int. 1991 Sep;49(3):221–225. doi: 10.1007/BF02556122. [DOI] [PubMed] [Google Scholar]
  64. Yamaguchi A., Katagiri T., Ikeda T., Wozney J. M., Rosen V., Wang E. A., Kahn A. J., Suda T., Yoshiki S. Recombinant human bone morphogenetic protein-2 stimulates osteoblastic maturation and inhibits myogenic differentiation in vitro. J Cell Biol. 1991 May;113(3):681–687. doi: 10.1083/jcb.113.3.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. von der Mark K. Immunological studies on collagen type transition in chondrogenesis. Curr Top Dev Biol. 1980;14(Pt 2):199–225. doi: 10.1016/s0070-2153(08)60195-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES