Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1987 Feb 1;89(2):321–337. doi: 10.1085/jgp.89.2.321

Dynamics of turtle cones

PMCID: PMC2215897  PMID: 3559514

Abstract

The response dynamics of turtle photoreceptors (cones) were studied by the cross-correlation method using a white-noise-modulated light stimulus. Incremental responses were characterized by the kernels. White-noise-evoked responses with a peak-to-peak excursion of greater than 5 mV were linear, with mean square errors of approximately 8%, a degree of linearity comparable to the horizontal cell responses. Both a spot (0.17 mm diam) and a large field of light produced almost identical kernels. The amplitudes of receptor kernels obtained at various mean irradiances fitted approximately the Weber-Fechner relationship and the mean levels controlled both the amplitude and the response dynamics; kernels were slow and monophasic at low mean irradiance and were fast and biphasic at high mean irradiance. This is a parametric change and is a piecewise linearization. Horizontal cell kernels evoked by the small spot of light were monophasic and slower than the receptor kernels produced by the same stimulus. Larger spots of light or a steady annular illumination transformed the slow horizontal cell kernel into a fast kernel similar to those of the receptors. The slowing down of the kernel waveform was modeled by a simple low-pass circuit and the presumed feedback from horizontal cells onto cones did not appear to play a major role.

Full Text

The Full Text of this article is available as a PDF (1,023.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baylor D. A., Fuortes M. G. Electrical responses of single cones in the retina of the turtle. J Physiol. 1970 Mar;207(1):77–92. doi: 10.1113/jphysiol.1970.sp009049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baylor D. A., Hodgkin A. L. Detection and resolution of visual stimuli by turtle photoreceptors. J Physiol. 1973 Oct;234(1):163–198. doi: 10.1113/jphysiol.1973.sp010340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chappell R. L., Naka K., Sakuranaga M. Dynamics of turtle horizontal cell response. J Gen Physiol. 1985 Sep;86(3):423–453. doi: 10.1085/jgp.86.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Daly S. J., Normann R. A. Temporal information processing in cones: effects of light adaptation on temporal summation and modulation. Vision Res. 1985;25(9):1197–1206. doi: 10.1016/0042-6989(85)90034-3. [DOI] [PubMed] [Google Scholar]
  5. Davis G. W., Naka K. Spatial organization of catfish retinal neurons. I. Single- and random-bar stimulation. J Neurophysiol. 1980 Mar;43(3):807–831. doi: 10.1152/jn.1980.43.3.807. [DOI] [PubMed] [Google Scholar]
  6. Fuortes M. G., Schwartz E. A., Simon E. J. Colour-dependence of cone responses in the turtle retina. J Physiol. 1973 Oct;234(1):199–216. doi: 10.1113/jphysiol.1973.sp010341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fuortes M. G., Simon E. J. Interactions leading to horizontal cell responses in the turtle retina. J Physiol. 1974 Jul;240(1):177–198. doi: 10.1113/jphysiol.1974.sp010606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kawasaki M., Aoki K., Naka K. Effects of background and spatial pattern on incremental sensitivity of catfish horizontal cells. Vision Res. 1984;24(10):1197–1204. doi: 10.1016/0042-6989(84)90175-5. [DOI] [PubMed] [Google Scholar]
  9. Kelly D. H. Theory of flicker and transient responses. I. Uniform fields. J Opt Soc Am. 1971 Apr;61(4):537–546. doi: 10.1364/josa.61.000537. [DOI] [PubMed] [Google Scholar]
  10. Lam D. M., Lasater E. M., Naka K. I. gamma-Aminobutyric acid: a neurotransmitter candidate for cone horizontal cells of the catfish retina. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6310–6313. doi: 10.1073/pnas.75.12.6310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Marmarelis P. Z., Naka K. I. Nonlinear analysis and synthesis of receptive-field responses in the catfish retina. 3. Two-input white-noise analysis. J Neurophysiol. 1973 Jul;36(4):634–648. doi: 10.1152/jn.1973.36.4.634. [DOI] [PubMed] [Google Scholar]
  12. Mizunami M., Tateda H., Naka K. Dynamics of cockroach ocellar neurons. J Gen Physiol. 1986 Aug;88(2):275–292. doi: 10.1085/jgp.88.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Naka K. I., Rushton W. A. S-potentials from colour units in the retina of fish (Cyprinidae). J Physiol. 1966 Aug;185(3):536–555. doi: 10.1113/jphysiol.1966.sp008001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Naka K. I., Rushton W. A. The generation and spread of S-potentials in fish (Cyprinidae). J Physiol. 1967 Sep;192(2):437–461. doi: 10.1113/jphysiol.1967.sp008308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Naka K. Field adaptation in the horizontal cells. Rushtonian transformation. Nihon Ika Daigaku Zasshi. 1985 Jun;52(3):281–291. doi: 10.1272/jnms1923.52.281. [DOI] [PubMed] [Google Scholar]
  16. Naka K., Marmarelis P. Z., Chan R. Y. Morphological and functional identifications of catfish retinal neurons. III. Functional identification. J Neurophysiol. 1975 Jan;38(1):92–131. doi: 10.1152/jn.1975.38.1.92. [DOI] [PubMed] [Google Scholar]
  17. Normann R. A., Anderton P. J. The incremental sensitivity curve of turtle cone photoreceptors. Vision Res. 1983;23(12):1731–1733. doi: 10.1016/0042-6989(83)90190-6. [DOI] [PubMed] [Google Scholar]
  18. Normann R. A., Perlman I. Evaluating sensitivity changing mechanisms in light-adapted photoreceptors. Vision Res. 1979;19(4):391–394. doi: 10.1016/0042-6989(79)90101-9. [DOI] [PubMed] [Google Scholar]
  19. Ohtsuka T. Axons connecting somata and axon terminals of luminosity-type horizontal cells in the turtle retina: receptive field studies and intracellular injections of HRP. J Comp Neurol. 1983 Oct 20;220(2):191–198. doi: 10.1002/cne.902200206. [DOI] [PubMed] [Google Scholar]
  20. Piccolino M., Neyton J., Gerschenfeld H. Center-surround antagonistic organization in small-field luminosity horizontal cells of turtle retina. J Neurophysiol. 1981 Mar;45(3):363–375. doi: 10.1152/jn.1981.45.3.363. [DOI] [PubMed] [Google Scholar]
  21. RUSHTON W. A. VISUAL ADAPTATION. Proc R Soc Lond B Biol Sci. 1965 Mar 16;162:20–46. doi: 10.1098/rspb.1965.0024. [DOI] [PubMed] [Google Scholar]
  22. Saito T., Miller W. H., Tomita T. C- and L-type horizontal cells in the turtle retina. Vision Res. 1974 Jan;14(1):119–123. doi: 10.1016/0042-6989(74)90125-4. [DOI] [PubMed] [Google Scholar]
  23. Sakai H., Naka K. Novel pathway connecting the outer and inner vertebrate retina. Nature. 1985 Jun 13;315(6020):570–571. doi: 10.1038/315570a0. [DOI] [PubMed] [Google Scholar]
  24. Sakuranaga M., Ando Y. Visual sensitivity and Wiener kernels. Vision Res. 1985;25(4):507–510. doi: 10.1016/0042-6989(85)90153-1. [DOI] [PubMed] [Google Scholar]
  25. Sakuranaga M., Naka K. Signal transmission in the catfish retina. II. Transmission to type-N cell. J Neurophysiol. 1985 Feb;53(2):390–410. doi: 10.1152/jn.1985.53.2.390. [DOI] [PubMed] [Google Scholar]
  26. Simon E. J. Two types of luminosity horizontal cells in the retina of the turtle. J Physiol. 1973 Apr;230(1):199–211. doi: 10.1113/jphysiol.1973.sp010183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tranchina D., Gordon J., Shapley R. M. Retinal light adaptation--evidence for a feedback mechanism. 1984 Jul 26-Aug 1Nature. 310(5975):314–316. doi: 10.1038/310314a0. [DOI] [PubMed] [Google Scholar]
  28. Tranchina D., Gordon J., Shapley R. Spatial and temporal properties of luminosity horizontal cells in the turtle retina. J Gen Physiol. 1983 Nov;82(5):573–598. doi: 10.1085/jgp.82.5.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tranchina D., Gordon J., Shapley R., Toyoda J. Linear information processing in the retina: a study of horizontal cell responses. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6540–6542. doi: 10.1073/pnas.78.10.6540. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES