Abstract
The mechanical responses (active and resting tension, dP/dt, TPT) and ionic exchange characteristics (Ca++, K+, Na+) which follow upon a variation in temperature, rate, and [K+]0 were studied in the rabbit papillary muscle and arterially perfused rabbit interventricular setpum. Abrupt changes in temperature provided a means of separating the contributions of rate of development (intensity) of active state and duration of active state to total active tension development (approximated by isometric tension). Threefold changes in duration of active state with proportional changes in active tension can be induced without evidence for alteration of Ca++, K+, or Na+ exchange. Abrupt cooling produced a moderate (∼15%) increase of dP/dt which suggests an augmentation of active state intensity. Evidence is presented to suggest that this increase of dP/dt is based upon an increase in membrane Ca++ concentration which occurs secondary to inhibition of active Na+ transport. The alterations in ionic exchange and active state produced by variation of temperature are discussed in terms of a five-component control system.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brady A. J. Time and displacement dependence of cardiac contractility: problems in defining the active state and force-velocity relations. Fed Proc. 1965 Nov-Dec;24(6):1410–1420. [PubMed] [Google Scholar]
- Inesi G., Watanabe S. Temperature dependence of ATP hydrolysis and calcium uptake by fragmented sarcoplasmic membranes. Arch Biochem Biophys. 1967 Sep;121(3):665–671. doi: 10.1016/0003-9861(67)90051-3. [DOI] [PubMed] [Google Scholar]
- Kaufmann R., Fleckenstein A. Die Bedeutung der Aktionspotential-Dauer und der Ca++-Ionen beim Zustandekommen der positiv-inotropen Kältewirkungen am Warmblüter-Myokard. Pflugers Arch Gesamte Physiol Menschen Tiere. 1965 Jul 16;285(1):1–18. [PubMed] [Google Scholar]
- LANGER G. A., BRADY A. J. Calcium flux in the mammalian ventricular myocardium. J Gen Physiol. 1963 Mar;46:703–719. doi: 10.1085/jgp.46.4.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Opit L. J., Charnock J. S. A molecular model for a sodium pump. Nature. 1965 Oct 30;208(5009):471–474. doi: 10.1038/208471a0. [DOI] [PubMed] [Google Scholar]
- Shelburne J. C., Serena S. D., Langer G. A. Rate-tension staircase in rabbit ventricular muscle: relation to ionic exchange. Am J Physiol. 1967 Nov;213(5):1115–1124. doi: 10.1152/ajplegacy.1967.213.5.1115. [DOI] [PubMed] [Google Scholar]
- Sumbera J., Bravený P., Kruta V. Effects of temperature on the duration and velocity of myocardial contraction in normal and low calcium media. Arch Int Physiol Biochim. 1967 Apr;75(2):261–276. doi: 10.3109/13813456709089575. [DOI] [PubMed] [Google Scholar]
- WEBER A., HERZ R., REISS I. On the mechanism of the relaxing effect of fragmented sarcoplasmic reticulum. J Gen Physiol. 1963 Mar;46:679–702. doi: 10.1085/jgp.46.4.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEBER A., HERZ R. The binding of calcium to actomyosin systems in relation to their biological activity. J Biol Chem. 1963 Feb;238:599–605. [PubMed] [Google Scholar]
- WOODBURY J. W. Interrelationships between ion transport mechanisms and excitatory events. Fed Proc. 1963 Jan-Feb;22:31–35. [PubMed] [Google Scholar]
- Yamamoto T., Tonomura Y. Reaction mechanism of the Ca++ -dependent ATPase of sarcoplasmic reticulum from skeletal muscle. I. Kinetic studies. J Biochem. 1967 Nov;62(5):558–575. doi: 10.1093/oxfordjournals.jbchem.a128706. [DOI] [PubMed] [Google Scholar]