Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1971 Nov 1;58(5):523–543. doi: 10.1085/jgp.58.5.523

Two Inward Currents in Frog Atrial Muscle

Merrill Tarr 1
PMCID: PMC2226043  PMID: 5122372

Abstract

The double sucrose-gap voltage-clamp technique was applied to frog atrial tissue to investigate the ionic currents responsible for the action potential in this tissue. Membrane depolarization elicited two distinct components of inward current when the test node was exposed to normal Ringer solution: a fast inward current and a slow inward current. The fast inward current appeared to be carried by sodium ions, since it was rapidly abolished by exposure of the fiber to Na+-free solution or tetrodotoxin but persisted on exposure to Ca++-free solution. In contrast, in the majority of the preparations the slow inward current appeared to be primarily carried by calcium ions, since it was abolished on exposure of the fiber to Ca++-free solution but persisted on exposure to Na+-free solution. Action potential data supported the voltage-clamp findings. The normal action potential shows two distinct components in the upstroke phase: an initial rapid phase of depolarization followed by a slower phase of depolarization reaching the peak of the action potential. Abolition of the fast inward current resulted in abolition of the initial rapid phase of depolarization. Abolition of the slow inward current resulted in abolition of the slow phase of depolarization. These data support the hypothesis that two distinct and different ionic mechanisms contribute to the upstroke phase of the action potential in frog atrial tissue.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANTONI H., DELIUS W. NACHWEIS VON ZWEI KOMPONENTEN IN DER ANSTIEGSPHASE DES AKTIONSPONTENTIALS VON FROSCHMYOKARDFASERN. Pflugers Arch Gesamte Physiol Menschen Tiere. 1965 Apr 6;283:187–202. [PubMed] [Google Scholar]
  2. Beeler G. W., Jr, Reuter H. Membrane calcium current in ventricular myocardial fibres. J Physiol. 1970 Mar;207(1):191–209. doi: 10.1113/jphysiol.1970.sp009056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beeler G. W., Jr, Reuter H. Voltage clamp experiments on ventricular myocarial fibres. J Physiol. 1970 Mar;207(1):165–190. doi: 10.1113/jphysiol.1970.sp009055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blaustein M. P., Goldman D. E. The action of certain polyvalent cations on the voltage-clamped lobster axon. J Gen Physiol. 1968 Mar;51(3):279–291. doi: 10.1085/jgp.51.3.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brady A. J., Woodbury J. W. The sodium-potassium hypothesis as the basis of electrical activity in frog ventricle. J Physiol. 1960 Dec;154(2):385–407. doi: 10.1113/jphysiol.1960.sp006586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. COLE K. S., MOORE J. W. Ionic current measurements in the squid giant axon membrane. J Gen Physiol. 1960 Sep;44:123–167. doi: 10.1085/jgp.44.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carmeliet E., Vereecke J. Adrenaline and the plateau phase of the cardiac action potential. Importance of Ca++, Na+ and K+ conductance. Pflugers Arch. 1969;313(4):300–315. doi: 10.1007/BF00593955. [DOI] [PubMed] [Google Scholar]
  8. Coraboeuf E., Vassort G. Effects of some inhibitors of ionic permeabilities on ventricular action potential and contraction of rat and guinea-pig hearts. J Electrocardiol. 1968;1(1):19–29. doi: 10.1016/s0022-0736(68)80005-6. [DOI] [PubMed] [Google Scholar]
  9. HOFFMAN B. F., SUCKLING E. E. Effect of several cations on transmembrane potentials of cardiac muscle. Am J Physiol. 1956 Aug;186(2):317–324. doi: 10.1152/ajplegacy.1956.186.2.317. [DOI] [PubMed] [Google Scholar]
  10. Hagiwara S., Nakajima S. Differences in Na and Ca spikes as examined by application of tetrodotoxin, procaine, and manganese ions. J Gen Physiol. 1966 Mar;49(4):793–806. doi: 10.1085/jgp.49.4.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Johnson E. A., Lieberman M. Heart: excitation and contraction. Annu Rev Physiol. 1971;33:479–532. doi: 10.1146/annurev.ph.33.030171.002403. [DOI] [PubMed] [Google Scholar]
  12. Mascher D. Electrical and mechanical responses from ventricular muscle fibers after inactivation of the sodium carrying system. Pflugers Arch. 1970;317(4):359–372. doi: 10.1007/BF00586584. [DOI] [PubMed] [Google Scholar]
  13. Mascher D., Peper K. Two components of inward current in myocardial muscle fibers. Pflugers Arch. 1969;307(3):190–203. doi: 10.1007/BF00592084. [DOI] [PubMed] [Google Scholar]
  14. ORKAND R. K., NIEDERGERKE R. HEART ACTION POTENTIAL: DEPENDENCE ON EXTERNAL CALCIUM AND SODIUM IONS. Science. 1964 Nov 27;146(3648):1176–1177. doi: 10.1126/science.146.3648.1176. [DOI] [PubMed] [Google Scholar]
  15. Reuter H., Seitz N. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol. 1968 Mar;195(2):451–470. doi: 10.1113/jphysiol.1968.sp008467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rougier O., Vassort G., Garnier D., Gargouil Y. M., Coraboeuf E. Existence and role of a slow inward current during the frog atrial action potential. Pflugers Arch. 1969;308(2):91–110. doi: 10.1007/BF00587018. [DOI] [PubMed] [Google Scholar]
  17. Rougier O., Vassort G., Stämpfli R. Voltage clamp experiments on frog atrial heart muscle fibres with the sucrose gap technique. Pflugers Arch Gesamte Physiol Menschen Tiere. 1968;301(2):91–108. doi: 10.1007/BF00362729. [DOI] [PubMed] [Google Scholar]
  18. TARR M., SPERELAKIS N. WEAK ELECTROTONIC INTERACTION BETWEEN CONTIGUOUS CARDIAC CELLS. Am J Physiol. 1964 Sep;207:691–700. doi: 10.1152/ajplegacy.1964.207.3.691. [DOI] [PubMed] [Google Scholar]
  19. TAYLOR R. E., MOORE J. W., COLE K. S. Analysis of certain errors in squid axon voltage clamp measurements. Biophys J. 1960 Nov;1:161–202. doi: 10.1016/s0006-3495(60)86882-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tarr M., Trank J. Equivalent circuit of frog atrial tissue as determined by voltage clamp-unclamp experiments. J Gen Physiol. 1971 Nov;58(5):511–522. doi: 10.1085/jgp.58.5.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. WRIGHT E. B., OGATA M. Action potential of amphibian single auricular muscle fiber: a dual response. Am J Physiol. 1961 Dec;201:1101–1108. doi: 10.1152/ajplegacy.1961.201.6.1101. [DOI] [PubMed] [Google Scholar]
  22. de Carvalho A. P., Hoffman B. F., de Carvalho M. P. Two components of the cardiac action potential. I. Voltage-time course and the effect of acetylcholine on atrial and nodal cells of the rabbit heart. J Gen Physiol. 1969 Nov;54(5):607–635. doi: 10.1085/jgp.54.5.607. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES