Abstract
Redistribution of axonal enzymes as a function of time in vitro was studied in an unbranched segment of frog sciatic nerve. Cholinesterase activity moved peripherally at a rate of 99 mm/day and centrally at 19 mm/day. One-quarter of the total nerve content of the enzyme was estimated to be in motion, one-eighth in each direction. Mitochondrial enzymes (hexokinase and glutamic dehydrogenase) moved peripherally at 20–31 mm/day, centrally at 11–20 mm/day. Only 10% of the total content of these mitochondrial enzymes was in motion. No movement of choline acetylase or 6-phosphogluconic dehydrogenase activity was seen even after 4 days in vitro. However, in a 12 day in vivo experiment choline acetylase moved toward the periphery at a rate of 0.34 mm/day. After a day or so in vitro the distal accumulations of cholinesterase and glutamic dehydrogenase decreased, with a concomitant and quantitatively equivalent increase in enzyme activities at the proximal end of the nerve. It is postulated that during incubation a mechanism for reversing the direction of flow develops in the peripheral stump of the nerve. Vinblastine inhibited central and peripheral flow of both cholinesterase and glutamic dehydrogenase. Movement of cholinesterase was not affected by ouabain, thalidomide, or phenobarbital, nor by K+ excess (110 mM) or absence.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Banks P., Mangnall D., Mayor D. The re-distribution of cytochrome oxidase, noradrenaline and adenosine triphosphate in adrenergic nerves constricted at two points. J Physiol. 1969 Feb;200(3):745–762. doi: 10.1113/jphysiol.1969.sp008720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bray J. J., Kon C. M., Breckenridge B. M. Reversed polarity of rapid axonal transport in chicken motoneurons. Brain Res. 1971 Oct 29;33(2):560–564. doi: 10.1016/0006-8993(71)90138-7. [DOI] [PubMed] [Google Scholar]
- Dahlström A. The transport of noradrenaline between two simultaneously performed ligations of the sciatic nerves of rat and cat. Acta Physiol Scand. 1967 Mar;69(3):158–166. doi: 10.1111/j.1748-1716.1967.tb03507.x. [DOI] [PubMed] [Google Scholar]
- Echandia E. L., Piezzi R. S. Microtubules in the nerve fibers of the toad Bufo arenarum Hensel. Effect of low temperature on the sciatic nerve. J Cell Biol. 1968 Nov;39(2):491–497. doi: 10.1083/jcb.39.2.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edstrom A., Mattsson H. Fast axonal transport in vitro in the sciatic system of the frog. J Neurochem. 1972 Jan;19(1):205–221. doi: 10.1111/j.1471-4159.1972.tb01270.x. [DOI] [PubMed] [Google Scholar]
- Elam J. S., Agranoff B. W. Rapid transport of protein in the optic system of the goldfish. J Neurochem. 1971 Mar;18(3):375–387. doi: 10.1111/j.1471-4159.1971.tb11965.x. [DOI] [PubMed] [Google Scholar]
- Fonnum F. Surface charge of choline acetyltransferase from different species. J Neurochem. 1970 Jul;17(7):1095–1100. doi: 10.1111/j.1471-4159.1970.tb02263.x. [DOI] [PubMed] [Google Scholar]
- Frizell M., Hasselgren P. O., Sjöstrand J. Axoplasmic transport of acetylcholinesterase and choline acetyltransferase in the vagus and hypoglossal nerve of the rabbit. Exp Brain Res. 1970 Jun 25;10(5):526–531. doi: 10.1007/BF00234268. [DOI] [PubMed] [Google Scholar]
- GARCIA-BUNUEL L., McDOUGAL D. B., Jr, BURCH H. B., JONES E. M., TOUHILL E. Oxidized and reduced pyridine nucleotide levels and enzyme activities in brain and liver of niacin deficient rats. J Neurochem. 1962 Nov-Dec;9:589–594. doi: 10.1111/j.1471-4159.1962.tb04215.x. [DOI] [PubMed] [Google Scholar]
- GUTH L., ALBERS R. W., BROWN W. C. QUANTITATIVE CHANGES IN CHOLINESTERASE ACTIVITY OF DENERVATED MUSCLE FIBERS AND SOLE PLATES. Exp Neurol. 1964 Sep;10:236–250. doi: 10.1016/0014-4886(64)90065-2. [DOI] [PubMed] [Google Scholar]
- Goldberg A. M., Kaita A. A., McCaman R. E. Microdetermination of choline acetyltransferase--a comparison of reinecke vs. periodide precipitation. J Neurochem. 1969 May;16(5):823–824. doi: 10.1111/j.1471-4159.1969.tb06463.x. [DOI] [PubMed] [Google Scholar]
- Grafstein B. Transport of protein by goldfish optic nerve fibers. Science. 1967 Jul 14;157(3785):196–198. doi: 10.1126/science.157.3785.196. [DOI] [PubMed] [Google Scholar]
- HEBB C. O., SILVER A. Gradient of choline acetylase activity. Nature. 1961 Jan 14;189:123–125. doi: 10.1038/189123a0. [DOI] [PubMed] [Google Scholar]
- Jankowska E., Lubińska L., Niemierko S. Translocation of AChE-containing particles in the axoplasm during nerve activity. Comp Biochem Physiol. 1969 Feb;28(2):907–913. doi: 10.1016/0010-406x(69)92124-0. [DOI] [PubMed] [Google Scholar]
- Kristensson K., Olsson Y., Sjöstrand J. Axonal uptake and retrograde transport of exogenous proteins in the hypoglossal nerve. Brain Res. 1971 Sep 24;32(2):399–406. doi: 10.1016/0006-8993(71)90332-5. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H. The quantitative histochemistry of the brain; histological sampling. J Histochem Cytochem. 1953 Nov;1(6):420–428. doi: 10.1177/1.6.420. [DOI] [PubMed] [Google Scholar]
- LUBINSKA L., NIEMIERKO S., ODERFELD NOWAK B., SZWARC L. BEHAVIOUR OF ACETYLCHOLINESTERASE IN ISOLATED NERVE SEGMENTS. J Neurochem. 1964 Jul;11:493–503. doi: 10.1111/j.1471-4159.1964.tb07498.x. [DOI] [PubMed] [Google Scholar]
- LUBINSKA L., NIEMIERKO S., ORDERFELD B., SZWARC L. The distribution of acetylcholinesterase in peripheral nerves. J Neurochem. 1963 Jan;10:25–41. doi: 10.1111/j.1471-4159.1963.tb05035.x. [DOI] [PubMed] [Google Scholar]
- LUBINSKA L. Outflow from cut ends of nerve fibres. Exp Cell Res. 1956 Feb;10(1):40–47. doi: 10.1016/0014-4827(56)90068-4. [DOI] [PubMed] [Google Scholar]
- Lasek R. J. Bidirectional transport of radioactively labelled axoplasmic components. Nature. 1967 Dec 23;216(5121):1212–1214. doi: 10.1038/2161212a0. [DOI] [PubMed] [Google Scholar]
- MCCAMAN R. E., HUNT J. M. MICRODETERMINATION OF CHOLINE ACETYLASE IN NERVOUS TISSUE. J Neurochem. 1965 Apr;12:253–259. doi: 10.1111/j.1471-4159.1965.tb06762.x. [DOI] [PubMed] [Google Scholar]
- Niemierko S., Lubińska L. Two fractions of axonal acetylcholinesterase exhibiting different behaviour in severed nerves. J Neurochem. 1967 Jul;14(7):761–769. doi: 10.1111/j.1471-4159.1967.tb10310.x. [DOI] [PubMed] [Google Scholar]
- Ochs S. Fast transport of materials in mammalian nerve fibers. Science. 1972 Apr 21;176(4032):252–260. doi: 10.1126/science.176.4032.252. [DOI] [PubMed] [Google Scholar]
- Ochs S., Hollingsworth D. Dependence of fast axoplasmic transport in nerve on oxidative metabolism. J Neurochem. 1971 Jan;18(1):107–114. doi: 10.1111/j.1471-4159.1971.tb00172.x. [DOI] [PubMed] [Google Scholar]
- Ochs S., Ranish N. Characteristics of the fast transport system in mammalian nerve fibers. J Neurobiol. 1969;1(2):247–261. doi: 10.1002/neu.480010211. [DOI] [PubMed] [Google Scholar]
- Ochs S., Ranish N. Metabolic dependence of fast axoplasmic transport in nerve. Science. 1970 Feb 6;167(3919):878–879. doi: 10.1126/science.167.3919.878. [DOI] [PubMed] [Google Scholar]
- Okada Y., McDougal D. B., Jr Physiological and biochemical changes in frog sciatic nerve during anoxia and recovery. J Neurochem. 1971 Dec;18(12):2335–2353. doi: 10.1111/j.1471-4159.1971.tb00189.x. [DOI] [PubMed] [Google Scholar]
- PICK J. Sympathectomy in amphibians; anatomical considerations. J Comp Neurol. 1957 Apr;107(2):169–207. doi: 10.1002/cne.901070202. [DOI] [PubMed] [Google Scholar]
- WILLIAMS P. L., LANDON D. N. Paranodal apparatus of peripheral myelinated nerve fibres of mammals. Nature. 1963 May 18;198:670–673. doi: 10.1038/198670a0. [DOI] [PubMed] [Google Scholar]
- Zelená J. Bidirectional movements of mitochondria along axons of an isolated nerve segment. Z Zellforsch Mikrosk Anat. 1968;92(2):186–196. doi: 10.1007/BF00335646. [DOI] [PubMed] [Google Scholar]