Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1996 Dec;16(12):6661–6667. doi: 10.1128/mcb.16.12.6661

Cleavage of RNA hairpins mediated by a developmentally regulated CCCH zinc finger protein.

C Bai 1, P P Tolias 1
PMCID: PMC231668  PMID: 8943320

Abstract

Control of RNA turnover is a major, but poorly understood, aspect of gene regulation. In multicellular organisms, progress toward dissecting RNA turnover pathways has been made by defining some cis-acting sequences that function as either regulatory or cleavage targets (J. G. Belasco and G. Brawerman, Control of Messenger RNA Stability, 1993). However, the identification of genes encoding proteins that regulate or cleave target RNAs has been elusive (C. A. Beelman and R. Parker, Cell 81:79-183, 1995); this gap in knowledge has made it difficult to identify additional components of RNA turnover pathways. We have utilized a modified expression cloning strategy to identify a developmentally regulated gene from Drosophila melanogaster that encodes a RNase that we refer to as Clipper (CLP). Significant sequence matches to open reading frames encoding unknown functions identified from the Caenorhabditis elegans and Saccharomyces cerevisiae genome sequencing projects suggest that all three proteins are members of a new protein family conserved from lower eukaryotes to invertebrates. We demonstrate that a member of this new protein family specifically cleaves RNA hairpins and that this activity resides in a region containing five copies of a previously uncharacterized CCCH zinc finger motif. CLP's endoribonucleolytic activity is distinct from that associated with RNase A (P. Blackburn and S. Moore, p. 317-433, in P. D. Boyer, ed., The Enzymes, vol. XV, part B, 1982) and is unrelated to RNase III processing of rRNAs and tRNAs (J. G. Belasco and G. Brawerman, Control of Messenger RNA Stability, 1993, and S. A. Elela, H. Igel, and M. Ares, Cell 85:115-124, 1995). Our results suggest that CLP may function directly in RNA metabolism.

Full Text

The Full Text of this article is available as a PDF (435.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bai C., Li Z., Tolias P. P. Developmental characterization of a Drosophila RNA-binding protein homologous to the human systemic lupus erythematosus-associated La/SS-B autoantigen. Mol Cell Biol. 1994 Aug;14(8):5123–5129. doi: 10.1128/mcb.14.8.5123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beelman C. A., Parker R. Degradation of mRNA in eukaryotes. Cell. 1995 Apr 21;81(2):179–183. doi: 10.1016/0092-8674(95)90326-7. [DOI] [PubMed] [Google Scholar]
  3. Berg J. M. Zinc fingers and other metal-binding domains. Elements for interactions between macromolecules. J Biol Chem. 1990 Apr 25;265(12):6513–6516. [PubMed] [Google Scholar]
  4. Brown N. H., Kafatos F. C. Functional cDNA libraries from Drosophila embryos. J Mol Biol. 1988 Sep 20;203(2):425–437. doi: 10.1016/0022-2836(88)90010-1. [DOI] [PubMed] [Google Scholar]
  5. DuBois R. N., McLane M. W., Ryder K., Lau L. F., Nathans D. A growth factor-inducible nuclear protein with a novel cysteine/histidine repetitive sequence. J Biol Chem. 1990 Nov 5;265(31):19185–19191. [PubMed] [Google Scholar]
  6. Elela S. A., Igel H., Ares M., Jr RNase III cleaves eukaryotic preribosomal RNA at a U3 snoRNP-dependent site. Cell. 1996 Apr 5;85(1):115–124. doi: 10.1016/s0092-8674(00)81087-9. [DOI] [PubMed] [Google Scholar]
  7. Kobe B., Deisenhofer J. A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature. 1995 Mar 9;374(6518):183–186. doi: 10.1038/374183a0. [DOI] [PubMed] [Google Scholar]
  8. Mohler J., Weiss N., Murli S., Mohammadi S., Vani K., Vasilakis G., Song C. H., Epstein A., Kuang T., English J. The embryonically active gene, unkempt, of Drosophila encodes a Cys3His finger protein. Genetics. 1992 Jun;131(2):377–388. doi: 10.1093/genetics/131.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Myers F. A., Francis-Lang H., Newbury S. F. Degradation of maternal string mRNA is controlled by proteins encoded on maternally contributed transcripts. Mech Dev. 1995 Jun;51(2-3):217–226. doi: 10.1016/0925-4773(95)00366-5. [DOI] [PubMed] [Google Scholar]
  10. Nagai K., Thøgersen H. C. Generation of beta-globin by sequence-specific proteolysis of a hybrid protein produced in Escherichia coli. 1984 Jun 28-Jul 4Nature. 309(5971):810–812. doi: 10.1038/309810a0. [DOI] [PubMed] [Google Scholar]
  11. Pearson R. B., Kemp B. E. Protein kinase phosphorylation site sequences and consensus specificity motifs: tabulations. Methods Enzymol. 1991;200:62–81. doi: 10.1016/0076-6879(91)00127-i. [DOI] [PubMed] [Google Scholar]
  12. Roberts D. B., Brock H. W., Rudden N. C., Evans-Roberts S. A Genetic and Cytogenetic Analysis of the Region Surrounding the Lsp-1 beta-Gene in DROSOPHILA MELANOGASTER. Genetics. 1985 Jan;109(1):145–156. doi: 10.1093/genetics/109.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Saunders R. D., Glover D. M., Ashburner M., Siden-Kiamos I., Louis C., Monastirioti M., Savakis C., Kafatos F. PCR amplification of DNA microdissected from a single polytene chromosome band: a comparison with conventional microcloning. Nucleic Acids Res. 1989 Nov 25;17(22):9027–9037. doi: 10.1093/nar/17.22.9027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schüpbach T., Wieschaus E. Female sterile mutations on the second chromosome of Drosophila melanogaster. I. Maternal effect mutations. Genetics. 1989 Jan;121(1):101–117. doi: 10.1093/genetics/121.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schüpbach T., Wieschaus E. Female sterile mutations on the second chromosome of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. Genetics. 1991 Dec;129(4):1119–1136. doi: 10.1093/genetics/129.4.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Smith D. B., Johnson K. S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 1988 Jul 15;67(1):31–40. doi: 10.1016/0378-1119(88)90005-4. [DOI] [PubMed] [Google Scholar]
  17. St Johnston D., Nüsslein-Volhard C. The origin of pattern and polarity in the Drosophila embryo. Cell. 1992 Jan 24;68(2):201–219. doi: 10.1016/0092-8674(92)90466-p. [DOI] [PubMed] [Google Scholar]
  18. Stroumbakis N. D., Li Z., Tolias P. P. RNA- and single-stranded DNA-binding (SSB) proteins expressed during Drosophila melanogaster oogenesis: a homolog of bacterial and eukaryotic mitochondrial SSBs. Gene. 1994 Jun 10;143(2):171–177. doi: 10.1016/0378-1119(94)90093-0. [DOI] [PubMed] [Google Scholar]
  19. Summers M. F. Zinc finger motif for single-stranded nucleic acids? Investigations by nuclear magnetic resonance. J Cell Biochem. 1991 Jan;45(1):41–48. doi: 10.1002/jcb.240450110. [DOI] [PubMed] [Google Scholar]
  20. Suter B., Steward R. Requirement for phosphorylation and localization of the Bicaudal-D protein in Drosophila oocyte differentiation. Cell. 1991 Nov 29;67(5):917–926. doi: 10.1016/0092-8674(91)90365-6. [DOI] [PubMed] [Google Scholar]
  21. Tautz D., Pfeifle C. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma. 1989 Aug;98(2):81–85. doi: 10.1007/BF00291041. [DOI] [PubMed] [Google Scholar]
  22. Wang J. Y., Qiu L., Wu E. D., Drlica K. RNases involved in ribozyme degradation in Escherichia coli. J Bacteriol. 1996 Mar;178(6):1640–1645. doi: 10.1128/jb.178.6.1640-1645.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES