Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Apr;17(4):2301–2311. doi: 10.1128/mcb.17.4.2301

cis regulatory requirements for hypodermal cell-specific expression of the Caenorhabditis elegans cuticle collagen gene dpy-7.

J S Gilleard 1, J D Barry 1, I L Johnstone 1
PMCID: PMC232079  PMID: 9121480

Abstract

The Caenorhabditis elegans cuticle collagens are encoded by a multigene family of between 50 and 100 members and are the major component of the nematode cuticular exoskeleton. They are synthesized in the hypodermis prior to secretion and incorporation into the cuticle and exhibit complex patterns of spatial and temporal expression. We have investigated the cis regulatory requirements for tissue- and stage-specific expression of the cuticle collagen gene dpy-7 and have identified a compact regulatory element which is sufficient to specify hypodermal cell reporter gene expression. This element appears to be a true tissue-specific promoter element, since it encompasses the dpy-7 transcription initiation sites and functions in an orientation-dependent manner. We have also shown, by interspecies transformation experiments, that the dpy-7 cis regulatory elements are functionally conserved between C. elegans and C. briggsae, and comparative sequence analysis supports the importance of the regulatory sequence that we have identified by reporter gene analysis. All of our data suggest that the spatial expression of the dpy-7 cuticle collagen gene is established essentially by a small tissue-specific promoter element and does not require upstream activator or repressor elements. In addition, we have found the DPY-7 polypeptide is very highly conserved between the two species and that the C. briggsae polypeptide can function appropriately within the C. elegans cuticle. This finding suggests a remarkably high level of conservation of individual cuticle components, and their interactions, between these two nematode species.

Full Text

The Full Text of this article is available as a PDF (535.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aamodt E. J., Chung M. A., McGhee J. D. Spatial control of gut-specific gene expression during Caenorhabditis elegans development. Science. 1991 Apr 26;252(5005):579–582. doi: 10.1126/science.2020855. [DOI] [PubMed] [Google Scholar]
  2. Broverman S., MacMorris M., Blumenthal T. Alteration of Caenorhabditis elegans gene expression by targeted transformation. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4359–4363. doi: 10.1073/pnas.90.10.4359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cox G. N., Fields C., Kramer J. M., Rosenzweig B., Hirsh D. Sequence comparisons of developmentally regulated collagen genes of Caenorhabditis elegans. Gene. 1989;76(2):331–344. doi: 10.1016/0378-1119(89)90173-x. [DOI] [PubMed] [Google Scholar]
  4. Cox G. N., Hirsh D. Stage-specific patterns of collagen gene expression during development of Caenorhabditis elegans. Mol Cell Biol. 1985 Feb;5(2):363–372. doi: 10.1128/mcb.5.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cox G. N., Staprans S., Edgar R. S. The cuticle of Caenorhabditis elegans. II. Stage-specific changes in ultrastructure and protein composition during postembryonic development. Dev Biol. 1981 Sep;86(2):456–470. doi: 10.1016/0012-1606(81)90204-9. [DOI] [PubMed] [Google Scholar]
  6. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Egan C. R., Chung M. A., Allen F. L., Heschl M. F., Van Buskirk C. L., McGhee J. D. A gut-to-pharynx/tail switch in embryonic expression of the Caenorhabditis elegans ges-1 gene centers on two GATA sequences. Dev Biol. 1995 Aug;170(2):397–419. doi: 10.1006/dbio.1995.1225. [DOI] [PubMed] [Google Scholar]
  8. Emmons S. W., Klass M. R., Hirsh D. Analysis of the constancy of DNA sequences during development and evolution of the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1333–1337. doi: 10.1073/pnas.76.3.1333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fire A., Harrison S. W., Dixon D. A modular set of lacZ fusion vectors for studying gene expression in Caenorhabditis elegans. Gene. 1990 Sep 14;93(2):189–198. doi: 10.1016/0378-1119(90)90224-f. [DOI] [PubMed] [Google Scholar]
  10. Francis G. R., Waterston R. H. Muscle organization in Caenorhabditis elegans: localization of proteins implicated in thin filament attachment and I-band organization. J Cell Biol. 1985 Oct;101(4):1532–1549. doi: 10.1083/jcb.101.4.1532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hengartner M. O., Horvitz H. R. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell. 1994 Feb 25;76(4):665–676. doi: 10.1016/0092-8674(94)90506-1. [DOI] [PubMed] [Google Scholar]
  12. Johnstone I. L., Barry J. D. Temporal reiteration of a precise gene expression pattern during nematode development. EMBO J. 1996 Jul 15;15(14):3633–3639. [PMC free article] [PubMed] [Google Scholar]
  13. Johnstone I. L., Shafi Y., Barry J. D. Molecular analysis of mutations in the Caenorhabditis elegans collagen gene dpy-7. EMBO J. 1992 Nov;11(11):3857–3863. doi: 10.1002/j.1460-2075.1992.tb05478.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Johnstone I. L. The cuticle of the nematode Caenorhabditis elegans: a complex collagen structure. Bioessays. 1994 Mar;16(3):171–178. doi: 10.1002/bies.950160307. [DOI] [PubMed] [Google Scholar]
  15. Kennedy B. P., Aamodt E. J., Allen F. L., Chung M. A., Heschl M. F., McGhee J. D. The gut esterase gene (ges-1) from the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. J Mol Biol. 1993 Feb 20;229(4):890–908. doi: 10.1006/jmbi.1993.1094. [DOI] [PubMed] [Google Scholar]
  16. Ko L. J., Engel J. D. DNA-binding specificities of the GATA transcription factor family. Mol Cell Biol. 1993 Jul;13(7):4011–4022. doi: 10.1128/mcb.13.7.4011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kramer J. M., Cox G. N., Hirsh D. Expression of the Caenorhabditis elegans collagen genes col-1 and col-2 is developmentally regulated. J Biol Chem. 1985 Feb 10;260(3):1945–1951. [PubMed] [Google Scholar]
  18. Kramer J. M., French R. P., Park E. C., Johnson J. J. The Caenorhabditis elegans rol-6 gene, which interacts with the sqt-1 collagen gene to determine organismal morphology, encodes a collagen. Mol Cell Biol. 1990 May;10(5):2081–2089. doi: 10.1128/mcb.10.5.2081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kramer J. M., Johnson J. J. Analysis of mutations in the sqt-1 and rol-6 collagen genes of Caenorhabditis elegans. Genetics. 1993 Dec;135(4):1035–1045. doi: 10.1093/genetics/135.4.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kramer J. M. Structures and functions of collagens in Caenorhabditis elegans. FASEB J. 1994 Mar 1;8(3):329–336. doi: 10.1096/fasebj.8.3.8143939. [DOI] [PubMed] [Google Scholar]
  21. Krause M., Harrison S. W., Xu S. Q., Chen L., Fire A. Elements regulating cell- and stage-specific expression of the C. elegans MyoD family homolog hlh-1. Dev Biol. 1994 Nov;166(1):133–148. doi: 10.1006/dbio.1994.1302. [DOI] [PubMed] [Google Scholar]
  22. Kuwabara P. E., Shah S. Cloning by synteny: identifying C. briggsae homologues of C. elegans genes. Nucleic Acids Res. 1994 Oct 25;22(21):4414–4418. doi: 10.1093/nar/22.21.4414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Larminie C. G., Johnstone I. L. Isolation and characterization of four developmentally regulated cathepsin B-like cysteine protease genes from the nematode Caenorhabditis elegans. DNA Cell Biol. 1996 Jan;15(1):75–82. doi: 10.1089/dna.1996.15.75. [DOI] [PubMed] [Google Scholar]
  24. Levy A. D., Kramer J. M. Identification, sequence and expression patterns of the Caenorhabditis elegans col-36 and col-40 collagen-encoding genes. Gene. 1993 Dec 31;137(2):281–285. doi: 10.1016/0378-1119(93)90021-t. [DOI] [PubMed] [Google Scholar]
  25. Liu Z., Kirch S., Ambros V. The Caenorhabditis elegans heterochronic gene pathway controls stage-specific transcription of collagen genes. Development. 1995 Aug;121(8):2471–2478. doi: 10.1242/dev.121.8.2471. [DOI] [PubMed] [Google Scholar]
  26. MacMorris M., Broverman S., Greenspoon S., Lea K., Madej C., Blumenthal T., Spieth J. Regulation of vitellogenin gene expression in transgenic Caenorhabditis elegans: short sequences required for activation of the vit-2 promoter. Mol Cell Biol. 1992 Apr;12(4):1652–1662. doi: 10.1128/mcb.12.4.1652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. MacMorris M., Spieth J., Madej C., Lea K., Blumenthal T. Analysis of the VPE sequences in the Caenorhabditis elegans vit-2 promoter with extrachromosomal tandem array-containing transgenic strains. Mol Cell Biol. 1994 Jan;14(1):484–491. doi: 10.1128/mcb.14.1.484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mello C. C., Kramer J. M., Stinchcomb D., Ambros V. Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 1991 Dec;10(12):3959–3970. doi: 10.1002/j.1460-2075.1991.tb04966.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Merika M., Orkin S. H. DNA-binding specificity of GATA family transcription factors. Mol Cell Biol. 1993 Jul;13(7):3999–4010. doi: 10.1128/mcb.13.7.3999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Okkema P. G., Fire A. The Caenorhabditis elegans NK-2 class homeoprotein CEH-22 is involved in combinatorial activation of gene expression in pharyngeal muscle. Development. 1994 Aug;120(8):2175–2186. doi: 10.1242/dev.120.8.2175. [DOI] [PubMed] [Google Scholar]
  31. Okkema P. G., Harrison S. W., Plunger V., Aryana A., Fire A. Sequence requirements for myosin gene expression and regulation in Caenorhabditis elegans. Genetics. 1993 Oct;135(2):385–404. doi: 10.1093/genetics/135.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Shim Y. H., Bonner J. J., Blumenthal T. Activity of a C. elegans GATA transcription factor, ELT-1, expressed in yeast. J Mol Biol. 1995 Nov 10;253(5):665–676. doi: 10.1006/jmbi.1995.0581. [DOI] [PubMed] [Google Scholar]
  34. Snutch T. P., Baillie D. L. A high degree of DNA strain polymorphism associated with the major heat shock gene in Caenorhabditis elegans. Mol Gen Genet. 1984;195(1-2):329–335. doi: 10.1007/BF00332767. [DOI] [PubMed] [Google Scholar]
  35. Stenico M., Lloyd A. T., Sharp P. M. Codon usage in Caenorhabditis elegans: delineation of translational selection and mutational biases. Nucleic Acids Res. 1994 Jul 11;22(13):2437–2446. doi: 10.1093/nar/22.13.2437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sulston J. E., Horvitz H. R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol. 1977 Mar;56(1):110–156. doi: 10.1016/0012-1606(77)90158-0. [DOI] [PubMed] [Google Scholar]
  37. Sulston J. E., Schierenberg E., White J. G., Thomson J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol. 1983 Nov;100(1):64–119. doi: 10.1016/0012-1606(83)90201-4. [DOI] [PubMed] [Google Scholar]
  38. Way J. C., Wang L., Run J. Q., Wang A. The mec-3 gene contains cis-acting elements mediating positive and negative regulation in cells produced by asymmetric cell division in Caenorhabditis elegans. Genes Dev. 1991 Dec;5(12A):2199–2211. doi: 10.1101/gad.5.12a.2199. [DOI] [PubMed] [Google Scholar]
  39. Xue D., Finney M., Ruvkun G., Chalfie M. Regulation of the mec-3 gene by the C.elegans homeoproteins UNC-86 and MEC-3. EMBO J. 1992 Dec;11(13):4969–4979. doi: 10.1002/j.1460-2075.1992.tb05604.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zorio D. A., Cheng N. N., Blumenthal T., Spieth J. Operons as a common form of chromosomal organization in C. elegans. Nature. 1994 Nov 17;372(6503):270–272. doi: 10.1038/372270a0. [DOI] [PubMed] [Google Scholar]
  41. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES