Abstract
Results of the proton magnetic resonance spectroscopy carried out on normal, benign breast disease and locally advanced breast cancer patients are presented. The in-vivo MR spectra of malignant breast tissue of patients (n = 67) suffering from infiltrating ductal carcinoma are dominated by the water resonance, while the spectra of the unaffected contralateral breast tissue of these patients are mainly dominated by resonance arising from lipids which is similar to the spectra of normal breast tissue obtained from volunteers (controls, n = 16). In addition to the water and lipid peaks, in majority of the patients (~80%) the water suppressed spectra showed a resonance at 3.2 ppm due to choline containing compounds (TCho) before treatment. In patients receiving neoadjuvant chemotherapy, absence/reduction in choline was observed in 89% of the patients. TCho was also observed in 2 of 14 benign lesions. The sensitivity and specificity of in-vivo MRS in detecting TCho in malignant tumours was 78% and 86%, respectively. Observation of TCho before treatment and its disappearance (or reduction) after treatment may be a useful indicator of response of locally advanced breast cancer to neoadjuvant chemotherapy. © 2001 Cancer Research Campaign http://www.bjcancer.com
Keywords: in-vivo proton magnetic resonance spectroscopy (MRS), locally advanced breast cancer (LABC), neoadjuvant chemotherapy (NACT), preoperative chemotherapy, total choline (TCho)
Full Text
The Full Text of this article is available as a PDF (253.1 KB).
Footnotes
A portion of this work was presented at the 7th scientific meeting of the International Society for Magnetic Resonance in Medicine, Philadelphia, Pennsylvania, USA, May 1999.
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boné B., Péntek Z., Perbeck L., Veress B. Diagnostic accuracy of mammography and contrast-enhanced MR imaging in 238 histologically verified breast lesions. Acta Radiol. 1997 Jul;38(4 Pt 1):489–496. doi: 10.1080/02841859709174374. [DOI] [PubMed] [Google Scholar]
- Daniel B. L., Yen Y. F., Glover G. H., Ikeda D. M., Birdwell R. L., Sawyer-Glover A. M., Black J. W., Plevritis S. K., Jeffrey S. S., Herfkens R. J. Breast disease: dynamic spiral MR imaging. Radiology. 1998 Nov;209(2):499–509. doi: 10.1148/radiology.209.2.9807580. [DOI] [PubMed] [Google Scholar]
- Friedrich M. MRI of the breast: state of the art. Eur Radiol. 1998;8(5):707–725. doi: 10.1007/s003300050463. [DOI] [PubMed] [Google Scholar]
- Glaholm J., Leach M. O., Collins D. J., Mansi J., Sharp J. C., Madden A., Smith I. E., McCready V. R. In-vivo 31P magnetic resonance spectroscopy for monitoring treatment response in breast cancer. Lancet. 1989 Jun 10;1(8650):1326–1327. doi: 10.1016/s0140-6736(89)92717-7. [DOI] [PubMed] [Google Scholar]
- Goel A. K., Seenu V., Shukla N. K., Raina V. Breast cancer presentation at a regional cancer centre. Natl Med J India. 1995 Jan-Feb;8(1):6–9. [PubMed] [Google Scholar]
- Gribbestad I. S., Fjösne H. E., Haugen O. A., Nilsen G., Krane J., Petersen S. B., Kvinnsland S. In vitro proton NMR spectroscopy of extracts from human breast tumours and non-involved breast tissue. Anticancer Res. 1993 Nov-Dec;13(6A):1973–1980. [PubMed] [Google Scholar]
- Gribbestad I. S., Singstad T. E., Nilsen G., Fjøsne H. E., Engan T., Haugen O. A., Rinck P. A. In vivo 1H MRS of normal breast and breast tumors using a dedicated double breast coil. J Magn Reson Imaging. 1998 Nov-Dec;8(6):1191–1197. doi: 10.1002/jmri.1880080602. [DOI] [PubMed] [Google Scholar]
- Harms S. E., Flamig D. P., Hesley K. L., Meiches M. D., Jensen R. A., Evans W. P., Savino D. A., Wells R. V. MR imaging of the breast with rotating delivery of excitation off resonance: clinical experience with pathologic correlation. Radiology. 1993 May;187(2):493–501. doi: 10.1148/radiology.187.2.8475297. [DOI] [PubMed] [Google Scholar]
- Heywang-Köbrunner S. H., Viehweg P., Heinig A., Küchler C. Contrast-enhanced MRI of the breast: accuracy, value, controversies, solutions. Eur J Radiol. 1997 Feb;24(2):94–108. doi: 10.1016/s0720-048x(96)01142-4. [DOI] [PubMed] [Google Scholar]
- Jagannathan N. R., Singh M., Govindaraju V., Raghunathan P., Coshic O., Julka P. K., Rath G. K. Volume localized in vivo proton MR spectroscopy of breast carcinoma: variation of water-fat ratio in patients receiving chemotherapy. NMR Biomed. 1998 Nov;11(8):414–422. doi: 10.1002/(sici)1099-1492(199812)11:8<414::aid-nbm537>3.0.co;2-w. [DOI] [PubMed] [Google Scholar]
- Kaiser W. A. MR-Mammographie. Radiologe. 1993 May;33(5):292–299. [PubMed] [Google Scholar]
- Kasimos J. N., Merchant T. E., Gierke L. W., Glonek T. 31P magnetic resonance spectroscopy of human colon cancer. Cancer Res. 1990 Feb 1;50(3):527–532. [PubMed] [Google Scholar]
- Katz-Brull R., Margalit R., Bendel P., Degani H. Choline metabolism in breast cancer; 2H-, 13C- and 31P-NMR studies of cells and tumors. MAGMA. 1998 Aug;6(1):44–52. doi: 10.1007/BF02662511. [DOI] [PubMed] [Google Scholar]
- Kvistad K. A., Bakken I. J., Gribbestad I. S., Ehrnholm B., Lundgren S., Fjøsne H. E., Haraldseth O. Characterization of neoplastic and normal human breast tissues with in vivo (1)H MR spectroscopy. J Magn Reson Imaging. 1999 Aug;10(2):159–164. doi: 10.1002/(sici)1522-2586(199908)10:2<159::aid-jmri8>3.0.co;2-0. [DOI] [PubMed] [Google Scholar]
- Leach M. O., Verrill M., Glaholm J., Smith T. A., Collins D. J., Payne G. S., Sharp J. C., Ronen S. M., McCready V. R., Powles T. J. Measurements of human breast cancer using magnetic resonance spectroscopy: a review of clinical measurements and a report of localized 31P measurements of response to treatment. NMR Biomed. 1998 Nov;11(7):314–340. doi: 10.1002/(sici)1099-1492(1998110)11:7<314::aid-nbm522>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
- Mackinnon W. B., Barry P. A., Malycha P. L., Gillett D. J., Russell P., Lean C. L., Doran S. T., Barraclough B. H., Bilous M., Mountford C. E. Fine-needle biopsy specimens of benign breast lesions distinguished from invasive cancer ex vivo with proton MR spectroscopy. Radiology. 1997 Sep;204(3):661–666. doi: 10.1148/radiology.204.3.9280241. [DOI] [PubMed] [Google Scholar]
- Merchant T. E., Gierke L. W., Meneses P., Glonek T. 31P magnetic resonance spectroscopic profiles of neoplastic human breast tissues. Cancer Res. 1988 Sep 15;48(18):5112–5118. [PubMed] [Google Scholar]
- Orel S. G. High-resolution MR imaging for the detection, diagnosis, and staging of breast cancer. Radiographics. 1998 Jul-Aug;18(4):903–912. doi: 10.1148/radiographics.18.4.9672975. [DOI] [PubMed] [Google Scholar]
- Orel S. G., Hochman M. G., Schnall M. D., Reynolds C., Sullivan D. C. High-resolution MR imaging of the breast: clinical context. Radiographics. 1996 Nov;16(6):1385–1401. doi: 10.1148/radiographics.16.6.8946543. [DOI] [PubMed] [Google Scholar]
- Piccoli C. W. Contrast-enhanced breast MRI: factors affecting sensitivity and specificity. Eur Radiol. 1997;7 (Suppl 5):281–288. doi: 10.1007/pl00006909. [DOI] [PubMed] [Google Scholar]
- Roebuck J. R., Cecil K. M., Schnall M. D., Lenkinski R. E. Human breast lesions: characterization with proton MR spectroscopy. Radiology. 1998 Oct;209(1):269–275. doi: 10.1148/radiology.209.1.9769842. [DOI] [PubMed] [Google Scholar]
- Sijens P. E., Wijrdeman H. K., Moerland M. A., Bakker C. J., Vermeulen J. W., Luyten P. R. Human breast cancer in vivo: H-1 and P-31 MR spectroscopy at 1.5 T. Radiology. 1988 Dec;169(3):615–620. doi: 10.1148/radiology.169.3.2847230. [DOI] [PubMed] [Google Scholar]
- Singer S., Souza K., Thilly W. G. Pyruvate utilization, phosphocholine and adenosine triphosphate (ATP) are markers of human breast tumor progression: a 31P- and 13C-nuclear magnetic resonance (NMR) spectroscopy study. Cancer Res. 1995 Nov 15;55(22):5140–5145. [PubMed] [Google Scholar]
- Smith T. A., Eccles S., Ormerod M. G., Tombs A. J., Titley J. C., Leach M. O. The phosphocholine and glycerophosphocholine content of an oestrogen-sensitive rat mammary tumour correlates strongly with growth rate. Br J Cancer. 1991 Nov;64(5):821–826. doi: 10.1038/bjc.1991.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Twelves C. J., Porter D. A., Lowry M., Dobbs N. A., Graves P. E., Smith M. A., Rubens R. D., Richards M. A. Phosphorus-31 metabolism of post-menopausal breast cancer studied in vivo by magnetic resonance spectroscopy. Br J Cancer. 1994 Jun;69(6):1151–1156. doi: 10.1038/bjc.1994.226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- den Hollander J. A., Luyten P. R., Mariën A. J., Segebarth C. M., Balériaux D. F., de Beer R., van Ormondt D. Potentials of quantitative image-localized human 31P nuclear magnetic resonance spectroscopy in the clinical evaluation of intracranial tumors. Magn Reson Q. 1989 Apr;5(2):152–168. [PubMed] [Google Scholar]