Full Text
The Full Text of this article is available as a PDF (559.9 KB).
References
- 1. Babb TL, Kupfer WR, Pretorius JK, Crandall RH, Levesque, MF (1991) Synaptic reorganization by mossy fibers in human epileptic sascia dentata. Neuroscience 42: 351–363. [DOI] [PubMed] [Google Scholar]
- 2. Baraban SC, Hollopeter G, Erickson JC, Schwartzkroin PA, Palmiter RD (1997) Knock‐out mice reveal a critical antiepileptic role for Neuropeptide Y. J Neurosci 17:8927–8936. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3. Barton ME, Klein BD, Wolf HH, White HS (2002) Pharmacological characterization of the 6 Hz psychomotor seizure model of partial epilepsy. Epilepsy Res in press. [DOI] [PubMed] [Google Scholar]
- 4. Beck H, Steffens R, Heinemann U, Elger CE (1997) Properties of voltage‐activated Ca2+ currents in acutely isolated human hippocampal granule cells. J Neurophysiol 77:1526–1537. [DOI] [PubMed] [Google Scholar]
- 5. Beck H, Steffens R, Elger CE, Heinemann U (1998) Voltage‐dependent Ca2+ currents in epilepsy. Epilepsy Res 32:321–332. [DOI] [PubMed] [Google Scholar]
- 6. Ben‐Ari Y (1985) Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14:375–403. [DOI] [PubMed] [Google Scholar]
- 7. Bertram EH, Mangan PS, Zhang D, Scott CA, Williamson JM (2001) The Midline Thalamus: Alterations and a Potential Role in Limbic Epilepsy. Epilepsia 42:967–978. [DOI] [PubMed] [Google Scholar]
- 8. Boggs JG, Nowack WJ, Drinkard CR (2000) Analysis of the “honey moon effect” in adult epilepsy patients. Epilepsia 41 (Suppl. 7):222. 10691121 [Google Scholar]
- 9. Brooks‐Kayal A, Shumate MD, Hong Y, Rikhter TY, Coulter DA (1998) Selective changes in single cell GABAA receptor subunit expression correlate with altered function in epileptic hippocampus. Nat Med 4:1166–1172. [DOI] [PubMed] [Google Scholar]
- 10. Brooks‐Kayal AR, Shumate MD, Jin H, Lin DD, Rikhter TY, Holloway K, Coulter, DA (1999) Human neuronal (‐aminobutyric acidA receptors: Coordinated subunit mRNA expression and functional correlates in individual dentate granule cells. J Neurosci 19:8312–8318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11. Brown WC, Schiffman DO, Swinyard EA, Goodman LS (1953) Comparative assay of antiepileptic drugs by “psychomotor” seizure test and minimal electroshock threshold test. J Pharmacol Exp Ther 107:273–283. [PubMed] [Google Scholar]
- 12. Buhl EH, Otis TS, Mody I (1996) Zinc‐induced collapse of augmented inhibition by GABA in a temporal lobe epilepsy model. Science 271:369–373. [DOI] [PubMed] [Google Scholar]
- 13. Burchfiel JL, Applegate CD, Samoriski GM, Nierenberg J (1998) The role of rhinencephalic networks in early stage kindling In: Corcoran, M.E. , Moshé, S. (eds.), Kindling 5. Plenum Press, New York , pp. 133–150. [Google Scholar]
- 14. Burnham WM (1976) Primary and “transfer” seizure development in the kindled rat. Can J Neurol Sci 2 417–428. [DOI] [PubMed] [Google Scholar]
- 15. Cavalheiro EA, Leite JP, Bortolotto ZA, Turski WA, Ikonomidou C, Turski L (1991) Long‐term effects of pilocarpine in rats: structural damage of the brain triggers kindling and spontaneous seizures. Epilepsia 32:778–782. [DOI] [PubMed] [Google Scholar]
- 16. Chen L, Noffel M, Cottrell GA, Hwang PA, Burnham WM (1966) Amygdala‐kindled convulsions in suspended rats. Exp Neurol 141:347–349. [DOI] [PubMed] [Google Scholar]
- 17. Coulter DA (2000) Mossy fiber zinc and temporal lobe epilepsy: pathological association with altered ‘epileptic’ (‐aminobutyric acid A receptors in dentate granule cells. Epilepsia 41 (suppl. 6): S96–S99. [DOI] [PubMed] [Google Scholar]
- 18. Coulter DA (2001) Epilepsy‐associated plasticity in (‐aminobutyric acid receptor expression, function, and inhibitory synaptic properties. Int Rev Neurobiol 45:237–252. [DOI] [PubMed] [Google Scholar]
- 19. Covolan L, Ribeiro LTC, Longo BM, Mello LEAM (2000) Cell damage and neurogenesis in the dentate granule cell layer of adult rats after pilocarpine‐ or kainate‐induced status epilepticus. Hippocampus 10:169–180. [DOI] [PubMed] [Google Scholar]
- 20. Cramer SU, Ebert U, Löscher W (1998) Characterization of phenytoin‐resistant kindled rats, a new model of drug‐resistant partial epilepsy: Comparison of inbred strains. Epilepsia 39:1046–1053. [DOI] [PubMed] [Google Scholar]
- 21. Cronin J, Dudek FE (1988) Chronic seizures and collateral sproutin of dentate mossy fibers after kainic acid treatment in rats. Brain Res 474:181–184. [DOI] [PubMed] [Google Scholar]
- 22. Duchowny MS, Burchfiel JL (1981) Facilitation and antagonism of kindled seizure development in the limbic system of the rat. Electroencephalogr Clin Neurophysiol 51: 403–416. [DOI] [PubMed] [Google Scholar]
- 23. Ebert U, Löscher W (1999) Characterization of phenytoin‐resistant kindled rats, a new model of drug‐resistant partial epilepsy: influence of genetic factors. Epilepsy Res 33:217–226. [DOI] [PubMed] [Google Scholar]
- 24. Eberwine J, Yeh H, Miyashiro K, Cao Y, Nair S, Finnell R, Zettel M, Coleman P (1992) Analysis of gene expression in single live neurons. Proc Natl Acad Sci U S A 89: 3010–3014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Elmér E, Kokaia M, Kokaia Z, McIntyre DC, Lindvall O (1998) Epileptogenesis induced by rapidly recurring seizures in genetically fast‐ but not slow‐kindling rats. Brain Res 789:111–117. [DOI] [PubMed] [Google Scholar]
- 26. Foldvary N, Bingaman WE, Wyllie E (2001) Surgical treatment of epilepsy. Neurol Clin 19:491–515. [DOI] [PubMed] [Google Scholar]
- 27. Fromm MF (2000) P‐glycoprotein: a defense mechanism limiting oral bioavailability and CNS accumulation of drugs. Int J Clin Pharmacol Ther 38:69–74. [DOI] [PubMed] [Google Scholar]
- 28. Gibbs JW, Shumate MD, Coulter DA (1997) Differential epilepsy‐associated alterations in postsynaptic GABAA receptors in temporal lobe epilepsy. J Neurophysiol 77:1924–1938. [DOI] [PubMed] [Google Scholar]
- 29. Glien M, Brandt C, Potschka H, Löscher W (2002) Effects of the novel antiepileptic drug levetiracetam on spontaneous recurrent seizures in the rat pilocarpine model of temporal lobe epilepsy. Epilepsia, in press. [DOI] [PubMed] [Google Scholar]
- 30. Goddard GV, McIntyre DC, Leech CK (1969) A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 25:295–330. [DOI] [PubMed] [Google Scholar]
- 31. Goodman JH (1998) Experimental models of status epilepticus In: Peterson, S.L. , Albertson, T.E. (eds.), Neuropharmacological Methods in Epilepsy Research, CRC Press, Boca Raton , pp. 95–125. [Google Scholar]
- 32. Gotman J (1984) Relationships between triggered seizures, spontaneous seizures, and interictal spiking in the kindling model of epilepsy. Exp Neurol 84:259–273. [DOI] [PubMed] [Google Scholar]
- 33. Haas KZ, Sperber EF, Moshé SL (1992) Kindling in developing animals: interaction between ipsilateral foci. Dev Brain Res 68:140–143. [DOI] [PubMed] [Google Scholar]
- 34. Heinemann U, Draguhn A, Ficker E, Stabel J, Zhang CL (1994) Strategies for the development of drugs for pharmacoresistant epilepsies. Epilepsia 35 (Suppl. 5):S10–S21. [DOI] [PubMed] [Google Scholar]
- 35. Hermann BP, Black Chhabria RBS (1981) Behavioral problems and social competence in children with epilepsy. Epilepsia 22:703–710. [DOI] [PubMed] [Google Scholar]
- 36. Hönack D, Löscher W (1989). Amygdala‐kindling as a model for chronic efficacy studies on antiepileptic drugs: experiments with carbamazepine. Neuropharmacology 28:599–610. [DOI] [PubMed] [Google Scholar]
- 37. Houser CR, Miyashiro JE, Swartz BE, Walsh GO, Rich JR, Delgado‐Escueta AV (1990) Altered patterns of dynorphin immunoreactivity suggest mossy fiber reorganization in human hippocampal epilepsy. J Neurosci 10:267–282. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38. Janson CG, McPhee SW, Leone P, Freese A, During MJ (2001) Viral‐based gene transfer to the mammalian CNS for functional genomic studies. Trends Neurosci 24:706–712. [DOI] [PubMed] [Google Scholar]
- 39. Jeub M, Beck H, Siep E, Rüschenschmidt C, Speckmann EJ, Ebert U, Potschka H, Freichel C, Reissmüller E, Löscher W (2002) Effect of phenytoin on sodium and calcium currents in hippocampal CA1 neurons of phenytoin‐resistant kindled rats. Neuropharmacology 42:107–116. [DOI] [PubMed] [Google Scholar]
- 40. Kelly ME, McIntyre DC (1996) Perirhinal cortex involvement in limbic kindled seizures. Epilepsy Res 26:233–243. [DOI] [PubMed] [Google Scholar]
- 41. Kelly ME, Battye RA, McIntyre DC (1999) Cortical spreading depression reversibly disrupts convulsive motor seizure expression in amygdala‐kindled rats. Neurosci 91, 305–313. [DOI] [PubMed] [Google Scholar]
- 42. Laurie DJ, Wisden W, Seeburg PH (1992) The distribution of thirteen GABAA subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J Neurosci 12: 4151–4172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43. Leppik IE (1992) Intractable epilepsy in adults In: Surgical treatment of epilepsy, Theodore WH (ed.), pp. 7–11, Elsevier, Amsterdam . [Google Scholar]
- 44. Liu M, Pleasure SJ, Collins AE, Noebels JL, Naya F, Tsai MJ, Lowenstein D H (2000) Loss of BETA2/NeuroD leads to malformation of the dentate gyrus and epilepsy Proc Natl Acad Sci U S A 97:865–870. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45. Löscher W (1986) Experimental models for intractable epilepsy in nonprimate animal species In: Intractable epilepsy: Experimental and clinical aspects, Schmidt D. and Morselli P.L., (eds.), pp. 25–37, Raven Press, New York . [Google Scholar]
- 46. Löscher W, Jäckel R, Czuczwar SJ (1986) Is amygdala kindling in rats a model for drug‐resistant partial epilepsy Exp Neurol 93:211–226. [DOI] [PubMed] [Google Scholar]
- 47. Löscher W (1997) Animal models of intractable epilepsy. Prog Neurobiol 53:239–258. [DOI] [PubMed] [Google Scholar]
- 48. Löscher W, Cramer S, Ebert U (1998) Selection of phenytoin responders and nonresponders in male and female amygdala‐kindled Sprague‐Dawley rats. Epilepsia 39:1138–1147. [DOI] [PubMed] [Google Scholar]
- 49. Löscher W (1999) Animal models of epilepsy and epileptic seizures In: Antiepileptic drugs. Handbook of experimental pharmacology, Eadie M.J. and Vajda F., (eds.), pp. 19–62, Springer, Berlin . [Google Scholar]
- 50. Löscher W, Reissmüller E, Ebert U (2000) Kindling alters the anticonvulsant efficacy of phenytoin in Wistar rats. Epilepsy Res 39:211–220. [DOI] [PubMed] [Google Scholar]
- 51. Löscher W (2002a) Animal models of drug resistant epilepsy In: Mechanisms of drug resistance in epilepsy: lessons from oncology, Ling V., (ed.), pp. in press Wiley, Chichester . [Google Scholar]
- 52. Löscher W (2002b) Current status and future directions in the pharmacotherapy of epilepsy. Trends Pharmacol Sci in press. [DOI] [PubMed] [Google Scholar]
- 53. Löscher W, Ebert U (1996) The role of the piriform cortex in kindling. Prog Neurobiol 50:427–481. [DOI] [PubMed] [Google Scholar]
- 54. Löscher W, Potschka H (2002) Role of multidrug transporters in pharmacoresistance to antiepileptic drugs. J Pharmacol Exp Ther in press. [DOI] [PubMed] [Google Scholar]
- 55. Löscher W, Rundfeldt C (1991) Kindling as a model of drug‐resistant partial epilepsy: selection of phenytoin‐resistant and nonresistant rats. J Pharmacol Exp Ther 258:483–489. [PubMed] [Google Scholar]
- 56. Löscher W, Schmidt D (1988) Which animal models should be used in the search for new antiepileptic drugs? A proposal based on experimental and clinical considerations. Epilepsy Res 2:145–181. [DOI] [PubMed] [Google Scholar]
- 57. Löscher W, Schmidt D (2002) New horizons in the development of antiepileptic drugs. Epilepsy Res in press. [DOI] [PubMed] [Google Scholar]
- 58. McCaughran JA, Corcoran ME, Wada JA (1978) Role of the forebrain commissures in amygdaloid kindling in rats. Epilepsia 19:19–33. [DOI] [PubMed] [Google Scholar]
- 59. McIntyre DC (1975) Split‐brain rat: transfer and interference of amygdala kindled convulsions. Can J Neurol Sci 2:419–426. [DOI] [PubMed] [Google Scholar]
- 60. McIntyre DC (1986) Kindling and the pyriform cortex. Wada, J.A. (ed.), Kindling 3, Raven Press, New York , pp. 249–262. [Google Scholar]
- 61. McIntyre DC, Goddard GV (1973) Transfer, interference and spontaneous recovery of convulsions kindled from the rat amygdala. Electroencephalogr Clin Neurophysiol 35:533–543. [DOI] [PubMed] [Google Scholar]
- 62. McIntyre DC, Kelly ME, Armstrong JN (1993) Kindling in the perirhinal cortex. Brain Res 615:1–6. [DOI] [PubMed] [Google Scholar]
- 63. McIntyre DC, Kelly ME, Staines WA (1996) Efferent projections of the anterior perirhinal cortex in the rat. J Comp Neurol 369:302–318. [DOI] [PubMed] [Google Scholar]
- 64. McIntyre DC, Molino A (1972) Amygdala lesions and CER learning: long‐term effect of kindling. Physiol Behav 8:1055–1058. [DOI] [PubMed] [Google Scholar]
- 65. McIntyre DC, Racine RJ (1986) Kindling mechanisms: Current progress on an experimental epilepsy model. Prog Neurobiol 27:1–12. [DOI] [PubMed] [Google Scholar]
- 66. McIntyre DC, Poulter MO (2001) Kindling and the mirror focus. International Rev Neurobiol 45:387–407. [DOI] [PubMed] [Google Scholar]
- 67. McIntyre DC, Wong RKS (1986) Cellular and synaptic properties of amygdala‐kindled pyriform cortex in vitro. J Neurophysiol 55:1295–1307. [DOI] [PubMed] [Google Scholar]
- 68. McIntyre DC, Kelly ME, Dufresne C (1999) FAST and SLOW amygdala kindling rat strains: Comparison of amygdala, hippocampal piriform and perirhinal cortex kindling. Epilepsy Res 35:197–209. [DOI] [PubMed] [Google Scholar]
- 69. McIntyre DC, Nathanson D, Edson N (1982) Anew model of partial status epilepticus based on kindling. Brain Res 250:53–63. [DOI] [PubMed] [Google Scholar]
- 70. McLeod WS, McIntyre DC (1995) The effects of amygdala kindling on T‐maze performance in epileptogenetically fast and slow kindling rats. Soc Neurosci Abstr 21 2115. [Google Scholar]
- 71. Mello LEAM, Cavalheiro EA, Tan AM (1993) Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy: cell loss and mossy fiber sprouting. Epilepsia 34: 985–995. [DOI] [PubMed] [Google Scholar]
- 72. Michael M, Holsinger D, Ikeda‐Douglas C, Cammisuli S, Ferbinteau J, DeSouza C, DeSouza S, Fecteau J, Racine RJ, Milgram NW (1998) Development of spontaneous seizures over extended electrical kindling. I Electrographic, behavioral and transfer kindling correlates. Brain Res 793:197–211. [DOI] [PubMed] [Google Scholar]
- 73. Mody I (1998) Ion channels in epilepsy. Int Rev Neurobiol 42:199–226. [DOI] [PubMed] [Google Scholar]
- 74. Morrell F (1959) Experimental focal epilepsy in animals. Arch Neurol 1:141–147. [DOI] [PubMed] [Google Scholar]
- 75. Moshé SL (1981) The effects of age on the kindling phenomenon. Dev Psychobiol 14:75–81. [DOI] [PubMed] [Google Scholar]
- 76. Nadler JV, Perry BW, Cotman CW (1980) Selective reinnervation of hippocampal area CA1 and the fascia dentata after destruction of CA3‐CA4 afferents with kainic acid. Brain Res 182:1–9. [DOI] [PubMed] [Google Scholar]
- 77. Noebels JL (1996) Targeting epilepsy genes. Neuron 16:241–244. [DOI] [PubMed] [Google Scholar]
- 78. Okazaki MM, Evenson DA, Nadler JV (1995) Hippocampal mossy fiber sprouting and synapse formation after status epilepticus in rats: visualization after retrograde transport of biocytin. J Comp Neurol 352:515–534. [DOI] [PubMed] [Google Scholar]
- 79. Olivia AA Jr, Jiang M, Lam T, Smith KL, Swann JW (2000) Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J Neurosci 20:3354–3368. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80. Otis TS, DeKonick Y, Mody I (1994) Lasting potentiation of inhibition is associated with an increased number of γ‐aminobutyric acid type A receptors activated during miniature inhibitory postsynaptic currents. Proc Natl Acad Sci U S A 91:7698–7702. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81. Parent JM, Yu TW, Leibowitz RT, Gershwind DH, Sloviter RS, Lowenstein DH (1997) Dentate neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 17:3727–3738. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82. Pinel JP, Mucha J, Phillips RF. A.G., 1975. Spontaneous seizures generated in rats by kindling: a preliminary report. Physiol Psychol 3:127–129. [Google Scholar]
- 83. Pinel JP, Rovner J.LI (1978) Experimental epileptogenesis: kindling‐induced epilepsy in rats. Exp Neurol 58:190–202. [DOI] [PubMed] [Google Scholar]
- 84. Pinel JP J (1981) Kindling induced experimental epilepsy in rats: cortical stimulation. Exp Neurol 72:559–569. [DOI] [PubMed] [Google Scholar]
- 85. Poulter MO, Barker JL, O'Carroll AM, Lolait SJ, Mahan LC (1992) Differential and transient expression of GABAA receptor a‐subunit mRNAs in the developing rat CNS. J Neurosci 12:2888–2900. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86. Poulter MO, Brown LA, Tynan S, Willick G, William R, McIntyre DC (1999) Differential expression of α1, α2, α3, and α5 GABAAreceptor subunits in seizure‐prone and seizure‐resistant rat models of temporal lobe epilepsy. J Neurosci 19:4654–4661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87. Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294. [DOI] [PubMed] [Google Scholar]
- 88. Racine RJ, Burnham WM, Gartner JG, Levitn D (1973) Rates of motor seizure development in rats subjected to electrical brain stimulation: Strain and interstimulus interval effects. Electrencephalogr Clin Neurophysiol 35:553–556. [DOI] [PubMed] [Google Scholar]
- 89. Racine RJ (1978) Kindling:The first decade. Neurosurgery 3:234–252. [DOI] [PubMed] [Google Scholar]
- 90. Racine RJ, Steingart M, McIntyre DC (1999) Development of kindling‐prone and kindling‐resistant rats: selective breeding and electrophysiological studies. Epilepsy Res 35:183–195. [DOI] [PubMed] [Google Scholar]
- 91. Reckziegel G, Beck H, Schramm J, Elger CE, Urban BW (1998) Electrophysiological characterization of Na+ currents in acutely isolated human hippocampal dentate granule cells. J Physiol (Lond) 509:139–150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92. Regesta G, Tanganelli P (1999) Clinical aspects and biological bases of drug‐resistant epilepsies. Epilepsy Res 34:109–122. [DOI] [PubMed] [Google Scholar]
- 93. Rizzi M, Guiso G, Mulé F, Moneta D, Sperk G, Vezzani A, Caccia S (2001) Induction of mdr‐1 by limbic seizures in mice: relevance for drug resistance in epilepsy. Soc Neurosci Abstr 27:553.2. [Google Scholar]
- 94. Schinkel AH, Wagenaar E, Mol CA, Van Deemter L (1996) P‐glycoprotein in the blood‐brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 97:2517–2524. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95. Schmidt D (2002) The clinical impact of new antiepileptic drugs after a decade of use in epilepsy. Epilepsy Res in press. [DOI] [PubMed] [Google Scholar]
- 96. Shumate MD, Lin DD, Gibbs JW, Holloway KL, Coulter DA (1998) Physiological properties of GABAA receptors in epileptic human dentate granule cells: comparison to epileptic and control rat. Epilepsy Res 32:114–128. [DOI] [PubMed] [Google Scholar]
- 97. Sloviter RS (1987) Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. Science 235:73–75. [DOI] [PubMed] [Google Scholar]
- 98. Sloviter RS (1994) The functional organization of the hippocampal dentate gyrus and its relevance to the pathogenesis of temporal lobe epilepsy. Ann Neurol 35:640–654. [DOI] [PubMed] [Google Scholar]
- 99. Sloviter RS, Dean E, Sollas AL, Goodman JH (1996) Apoptosis and necrosis induced in different hippocampal neuron populations by repetitive perforant path stimulation in the rat. J Comp Neurol 366:516–533. [DOI] [PubMed] [Google Scholar]
- 100. Spector R (2000) Drug transport in the mammalian central nervous system: multiple complex systems. A critical analysis and commentary. Pharmacology 60:58–73. [DOI] [PubMed] [Google Scholar]
- 101. Sramka M, Deslak P, Nadvornik P (1977) Sweet, W.H. (ed.), Neurosurgical Treatment In: Psychiatry, Pain and Epilepsy, p 651, University Park Press: Baltimore . [Google Scholar]
- 102. Sutula TP, Cascino G, Cavazos J, Parada I, Ramirez L (1989) Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann Neurol 26:321–330. [DOI] [PubMed] [Google Scholar]
- 103. Sutula TP, Cavazos JE, Woodard AR (1994) Long‐term structural and functional alterations induced in the hippocampus by kindling: Implications for memory dysfunction and the development of epilepsy. Hippocampus 4:254–258. [DOI] [PubMed] [Google Scholar]
- 104. Tauck DL, Nadler, JV (1985) Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid‐treated rats. J Neurosci 5:1016–1022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 105. Thompson JL, Holmes GL, Feldman DS (1989) Transfer following rapid kindling in the prepubescent rat. Epilepsy Res 3:222–226. [DOI] [PubMed] [Google Scholar]
- 106. Tishler DM, Weinberg KT, Hinton DR, Barbaro N, Annett GM, Raffel C (1995) MDR1 gene expression in brain of patients with medically intractable epilepsy. Epilepsia 36:1–6. [DOI] [PubMed] [Google Scholar]
- 107. Turski W, Cavalheiro EA, Bortolotto ZA, Mello LM, Schwarz M, Turski L (1984) Seizures produced by pilocarpine in mice: a behavioral, electoencephalographic, and morphological analysis. Brain Res 321:237–253. [DOI] [PubMed] [Google Scholar]
- 108. Turski L, Ikonomidou C, Turski WA, Bortolotto ZA, Cavalheiro EA (1989) Review: Cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: a novel model of intractable epilepsy. Synapse 3:154–171. [DOI] [PubMed] [Google Scholar]
- 109. Vreugdenhil M, Vanveelen CWM, Vanrijen PC, Dasilva FHL, Wadman WJ (1998) Effect of valproic acid on sodium currents in cortical neurons from patients with pharmaco‐resistant temporal lobe epilepsy. Epilepsy Res 32:309–320. [DOI] [PubMed] [Google Scholar]
- 110. Vreugdenhil M, Wadman WJ (1999) Modulation of sodium currents in rat CA1 neurons by carbamazepine and valproate after kindling epileptogenesis. Epilepsia 40:1512–1522. [DOI] [PubMed] [Google Scholar]
- 111. Wada JA, Osawa T (1976) Spontaneous recurrent seizures induced by daily amygdaloid stimulation in Senegalese baboons, Papio papio. Neurology 28:1026–1036. [DOI] [PubMed] [Google Scholar]
- 112. Wahlestedt C (1994) Antisense oligonucleotide strategies in neuropharmacology. Trends Pharm Sci 15:42–46. [DOI] [PubMed] [Google Scholar]
- 113. Wauquier A, Ashton D, Melis W (1979) Behavioral analysis of amygdala kindling in beagle dogs and the effects of clonazepam, diazepam, phenobarbital, diphenylhydantoin, and flunarizine on seizure manifestation. Exp Neurol 64:579–586. [DOI] [PubMed] [Google Scholar]
- 114. Wenzel HJ, Robbins CA, Tsai LH, Schwartzkroin PA (2001) Abnormal morphological and functional organization of the hippocampus in a p35 mutant model of cortical dysplasia associated with spontaneous seizures. J Neurosci 21:983–998. [DOI] [PMC free article] [PubMed] [Google Scholar]