Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1991 Sep;35(9):1891–1899. doi: 10.1128/aac.35.9.1891

Appearance of a new trimethoprim resistance gene, dhfrIX, in Escherichia coli from swine.

C Jansson 1, O Sköld 1
PMCID: PMC245287  PMID: 1659308

Abstract

A new gene, dhfrIX, coding for a trimethoprim-resistant dihydrofolate reductase (DHFR), was found in porcine isolates of Escherichia coli. The new enzyme, DHFR IX, containing 178 amino acids, showed an amino acid similarity of about 26% with DHFR I and the chromosomal DHFR of E. coli K-12. The dhfrIX gene was observed to occur on two distinctly different transferable plasmids, although a fragment of about 2.9 kb, including dhfrIX, had an identical restriction enzyme digestion map in each case. The new plasmid-borne dhfrIX gene mediates resistance to a drug level of only about 250 micrograms/ml, as compared with more than 1,000 micrograms/ml for the more frequently encountered dhfrI gene. The new plasmid-borne trimethoprim resistance gene could have been selected and spread as a consequence of the extensive use of trimethoprim in veterinary practice in Sweden. It will be important to try to follow its possible occurrence in human pathogens as well.

Full text

PDF
1891

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appleman J. R., Howell E. E., Kraut J., Blakley R. L. Role of aspartate 27 of dihydrofolate reductase from Escherichia coli in interconversion of active and inactive enzyme conformers and binding of NADPH. J Biol Chem. 1990 Apr 5;265(10):5579–5584. [PubMed] [Google Scholar]
  2. Baccanari D. P., Tansik R. L., Paterson S. J., Stone D. Characterization and amino acid sequence of Neisseria gonorrhoeae dihydrofolate reductase. J Biol Chem. 1984 Oct 10;259(19):12291–12298. [PubMed] [Google Scholar]
  3. Bachmann B. J. Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol Rev. 1972 Dec;36(4):525–557. doi: 10.1128/br.36.4.525-557.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barth P. T., Datta N., Hedges R. W., Grinter N. J. Transposition of a deoxyribonucleic acid sequence encoding trimethoprim and streptomycin resistances from R483 to other replicons. J Bacteriol. 1976 Mar;125(3):800–810. doi: 10.1128/jb.125.3.800-810.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bolin J. T., Filman D. J., Matthews D. A., Hamlin R. C., Kraut J. Crystal structures of Escherichia coli and Lactobacillus casei dihydrofolate reductase refined at 1.7 A resolution. I. General features and binding of methotrexate. J Biol Chem. 1982 Nov 25;257(22):13650–13662. [PubMed] [Google Scholar]
  6. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W., Crosa J. H., Falkow S. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene. 1977;2(2):95–113. [PubMed] [Google Scholar]
  7. Flensburg J., Sköld O. Massive overproduction of dihydrofolate reductase in bacteria as a response to the use of trimethoprim. Eur J Biochem. 1987 Feb 2;162(3):473–476. doi: 10.1111/j.1432-1033.1987.tb10664.x. [DOI] [PubMed] [Google Scholar]
  8. Fling M. E., Kope J., Richards C. Characterization of plasmid pAZ1 and the type III dihydrofolate reductase gene. Plasmid. 1988 Jan;19(1):30–38. doi: 10.1016/0147-619x(88)90060-1. [DOI] [PubMed] [Google Scholar]
  9. Fling M. E., Richards C. The nucleotide sequence of the trimethoprim-resistant dihydrofolate reductase gene harbored by Tn7. Nucleic Acids Res. 1983 Aug 11;11(15):5147–5158. doi: 10.1093/nar/11.15.5147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Franklin A. Antimicrobial drug resistance in porcine enterotoxigenic Escherichia coli of 0-group 149 and non-enterotoxigenic Escherichia coli. Vet Microbiol. 1984 Sep;9(5):467–475. doi: 10.1016/0378-1135(84)90067-1. [DOI] [PubMed] [Google Scholar]
  11. Freisheim J. H., Bitar K. G., Reddy A. V., Blankenship D. T. Dihydrofolate reductase from amethopterin-resistant Lactobacillus casei. Sequences of the cyanogen bromide peptides and complete sequences of the enzyme. J Biol Chem. 1978 Sep 25;253(18):6437–6444. [PubMed] [Google Scholar]
  12. Gleisner J. M., Peterson D. L., Blakley R. L. Amino-acid sequence of dihydrofolate reductase from a methotrexate-resistant mutant of Streptococcus faecium and identification of methionine residues at the inhibitor binding site. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3001–3005. doi: 10.1073/pnas.71.8.3001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grinsted J., Saunders J. R., Ingram L. C., Sykes R. B., Richmond M. H. Properties of a R factor which originated in Pseudomonas aeruginosa 1822. J Bacteriol. 1972 May;110(2):529–537. doi: 10.1128/jb.110.2.529-537.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hansen J. B., Olsen R. H. Isolation of large bacterial plasmids and characterization of the P2 incompatibility group plasmids pMG1 and pMG5. J Bacteriol. 1978 Jul;135(1):227–238. doi: 10.1128/jb.135.1.227-238.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Heikkilä E., Siitonen A., Jahkola M., Fling M., Sundström L., Huovinen P. Increase of trimethoprim resistance among Shigella species, 1975-1988: analysis of resistance mechanisms. J Infect Dis. 1990 Jun;161(6):1242–1248. doi: 10.1093/infdis/161.6.1242. [DOI] [PubMed] [Google Scholar]
  16. Huovinen P. Trimethoprim resistance. Antimicrob Agents Chemother. 1987 Oct;31(10):1451–1456. doi: 10.1128/aac.31.10.1451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ish-Horowicz D., Burke J. F. Rapid and efficient cosmid cloning. Nucleic Acids Res. 1981 Jul 10;9(13):2989–2998. doi: 10.1093/nar/9.13.2989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Iwakura M., Kawata M., Tsuda K., Tanaka T. Nucleotide sequence of the thymidylate synthase B and dihydrofolate reductase genes contained in one Bacillus subtilis operon. Gene. 1988 Apr 15;64(1):9–20. doi: 10.1016/0378-1119(88)90476-3. [DOI] [PubMed] [Google Scholar]
  19. Matthews D. A., Bolin J. T., Burridge J. M., Filman D. J., Volz K. W., Kaufman B. T., Beddell C. R., Champness J. N., Stammers D. K., Kraut J. Refined crystal structures of Escherichia coli and chicken liver dihydrofolate reductase containing bound trimethoprim. J Biol Chem. 1985 Jan 10;260(1):381–391. [PubMed] [Google Scholar]
  20. Müller-Hill B., Crapo L., Gilbert W. Mutants that make more lac repressor. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1259–1264. doi: 10.1073/pnas.59.4.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Olsson E., Söderlind O. Comparison of different assays for definition of heat-stable enterotoxigenicity of Escherichia coli porcine strains. J Clin Microbiol. 1980 Jan;11(1):6–15. doi: 10.1128/jcm.11.1.6-15.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Simonsen C. C., Chen E. Y., Levinson A. D. Identification of the type I trimethoprim-resistant dihydrofolate reductase specified by the Escherichia coli R-plasmid R483: comparison with procaryotic and eucaryotic dihydrofolate reductases. J Bacteriol. 1983 Sep;155(3):1001–1008. doi: 10.1128/jb.155.3.1001-1008.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sköld O., Widh A. A new dihydrofolate reductase with low trimethoprim sensitivity induced by an R factor mediating high resistance to trimethoprim. J Biol Chem. 1974 Jul 10;249(13):4324–4325. [PubMed] [Google Scholar]
  25. Smith D. R., Calvo J. M. Nucleotide sequence of the E coli gene coding for dihydrofolate reductase. Nucleic Acids Res. 1980 May 24;8(10):2255–2274. doi: 10.1093/nar/8.10.2255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Steen R., Sköld O. Plasmid-borne or chromosomally mediated resistance by Tn7 is the most common response to ubiquitous use of trimethoprim. Antimicrob Agents Chemother. 1985 Jun;27(6):933–937. doi: 10.1128/aac.27.6.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sundström L., Rådström P., Swedberg G., Sköld O. Site-specific recombination promotes linkage between trimethoprim- and sulfonamide resistance genes. Sequence characterization of dhfrV and sulI and a recombination active locus of Tn21. Mol Gen Genet. 1988 Aug;213(2-3):191–201. doi: 10.1007/BF00339581. [DOI] [PubMed] [Google Scholar]
  28. Sundström L., Sköld O. The dhfrI trimethoprim resistance gene of Tn7 can be found at specific sites in other genetic surroundings. Antimicrob Agents Chemother. 1990 Apr;34(4):642–650. doi: 10.1128/aac.34.4.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sundström L., Vinayagamoorthy T., Sköld O. Novel type of plasmid-borne resistance to trimethoprim. Antimicrob Agents Chemother. 1987 Jan;31(1):60–66. doi: 10.1128/aac.31.1.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Söderlind O., Möllby R. Studies on Escherichia coli in pigs V. Determination of enterotoxicity and frequency of O groups and K 88 antigen in strains from 200 piglets with neonatal diarrhoea. Zentralbl Veterinarmed B. 1978 Nov;25(9):719–728. [PubMed] [Google Scholar]
  31. Thomson C. J., Young H. K., Amyes S. G. N-terminal amino-acid sequence and subunit structure of the type IV trimethoprim-resistant plasmid-encoded dihydrofolate reductase. J Med Microbiol. 1990 Jul;32(3):153–158. doi: 10.1099/00222615-32-3-153. [DOI] [PubMed] [Google Scholar]
  32. Towner K. J., Young H. K., Thomson C. J., Amyes S. G. Detection in the UK of trimethoprim-resistant Escherichia coli encoding the type V dihydrofolate reductase. Eur J Clin Microbiol Infect Dis. 1990 Feb;9(2):149–150. doi: 10.1007/BF01963646. [DOI] [PubMed] [Google Scholar]
  33. Warner H. R., Lewis N. The synthesis of deoxycytidylate deaminase and dihydrofolate reductase and its control in Escherichia coli infected with bacteriophage T4 and T-4 amber mutants. Virology. 1966 May;29(1):172–175. doi: 10.1016/0042-6822(66)90208-x. [DOI] [PubMed] [Google Scholar]
  34. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES