Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1991 Sep;35(9):1928–1930. doi: 10.1128/aac.35.9.1928

Lack of homology of enterococci which have high-level resistance to trimethoprim with the dfrA gene of Staphylococcus aureus.

M Frosolono 1, S L Hodel-Christian 1, B E Murray 1
PMCID: PMC245296  PMID: 1952870

Abstract

Multiresistant enterococci were tested for susceptibility to trimethoprim (TMP). Although most enterococci are inhibited by less than or equal to 1.0 microgram/ml, the MICs for 7 of 29 selected multiresistant isolates were greater than or equal to 8 micrograms/ml, including for two beta-lactamase positive (Bla+) strains, for which the MICs of TMP were greater than 1,000 micrograms/ml, and for another Bla+ strain, for which the MIC was 128 micrograms/ml. None of five isolates tested transferred TMP resistance and none of the resistant isolates hybridized to the dfrA gene of Staphylococcus aureus. Whether TMP resistance in enterococci is due to a mutation(s) or to acquisition of a new gene is not known. Acquisition of resistance to TMP is another example of the multiple antimicrobial resistance typically displayed by enterococci.

Full text

PDF
1928

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Archer G. L., Coughter J. P., Johnston J. L. Plasmid-encoded trimethoprim resistance in staphylococci. Antimicrob Agents Chemother. 1986 May;29(5):733–740. doi: 10.1128/aac.29.5.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chenoweth C. E., Robinson K. A., Schaberg D. R. Efficacy of ampicillin versus trimethoprim-sulfamethoxazole in a mouse model of lethal enterococcal peritonitis. Antimicrob Agents Chemother. 1990 Sep;34(9):1800–1802. doi: 10.1128/aac.34.9.1800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Crider S. R., Colby S. D. Susceptibility of enterococci to trimethoprim and trimethoprim-sulfamethoxazole. Antimicrob Agents Chemother. 1985 Jan;27(1):71–75. doi: 10.1128/aac.27.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Galetto D. W., Johnston J. L., Archer G. L. Molecular epidemiology of trimethoprim resistance among coagulase-negative staphylococci. Antimicrob Agents Chemother. 1987 Nov;31(11):1683–1688. doi: 10.1128/aac.31.11.1683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Goodhart G. L. In vivo v in vitro susceptibility of enterococcus to trimethoprim-sulfamethoxazole. A pitfall. JAMA. 1984 Nov 16;252(19):2748–2749. [PubMed] [Google Scholar]
  6. Hamilton-Miller J. M. Antibiotic treatment of enterococcal infection. Antimicrob Agents Chemother. 1989 Dec;33(12):2164–2164. doi: 10.1128/aac.33.12.2164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hamilton-Miller J. M. Reversal of activity of trimethoprim against gram-positive cocci by thymidine, thymine and 'folates'. J Antimicrob Chemother. 1988 Jul;22(1):35–39. doi: 10.1093/jac/22.1.35. [DOI] [PubMed] [Google Scholar]
  8. Hamilton-Miller J. M., Stewart S. Trimethoprim resistance in enterococci: microbiological and biochemical aspects. Microbios. 1988;56(226):45–55. [PubMed] [Google Scholar]
  9. Lopardo H., Casimir L., Hernández C., Rubeglio E. A. Isolation of three strains of beta-lactamase-producing Enterococcus faecalis in Argentina. Eur J Clin Microbiol Infect Dis. 1990 Jun;9(6):402–405. doi: 10.1007/BF01979469. [DOI] [PubMed] [Google Scholar]
  10. Murray B. E., An F. Y., Clewell D. B. Plasmids and pheromone response of the beta-lactamase producer Streptococcus (Enterococcus) faecalis HH22. Antimicrob Agents Chemother. 1988 Apr;32(4):547–551. doi: 10.1128/aac.32.4.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Murray B. E., Church D. A., Wanger A., Zscheck K., Levison M. E., Ingerman M. J., Abrutyn E., Mederski-Samoraj B. Comparison of two beta-lactamase-producing strains of Streptococcus faecalis. Antimicrob Agents Chemother. 1986 Dec;30(6):861–864. doi: 10.1128/aac.30.6.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Murray B. E., Mederski-Samoraj B., Foster S. K., Brunton J. L., Harford P. In vitro studies of plasmid-mediated penicillinase from Streptococcus faecalis suggest a staphylococcal origin. J Clin Invest. 1986 Jan;77(1):289–293. doi: 10.1172/JCI112289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Murray B. E., Singh K. V., Markowitz S. M., Lopardo H. A., Patterson J. E., Zervos M. J., Rubeglio E., Eliopoulos G. M., Rice L. B., Goldstein F. W. Evidence for clonal spread of a single strain of beta-lactamase-producing Enterococcus (Streptococcus) faecalis to six hospitals in five states. J Infect Dis. 1991 Apr;163(4):780–785. doi: 10.1093/infdis/163.4.780. [DOI] [PubMed] [Google Scholar]
  14. Murray B. E. The life and times of the Enterococcus. Clin Microbiol Rev. 1990 Jan;3(1):46–65. doi: 10.1128/cmr.3.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Murray B. E., Tsao J., Panida J. Enterococci from Bangkok, Thailand, with high-level resistance to currently available aminoglycosides. Antimicrob Agents Chemother. 1983 Jun;23(6):799–802. doi: 10.1128/aac.23.6.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Najjar A., Murray B. E. Failure to demonstrate a consistent in vitro bactericidal effect of trimethoprim-sulfamethoxazole against enterococci. Antimicrob Agents Chemother. 1987 May;31(5):808–810. doi: 10.1128/aac.31.5.808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Patterson J. E., Wanger A., Zscheck K. K., Zervos M. J., Murray B. E. Molecular epidemiology of beta-lactamase-producing enterococci. Antimicrob Agents Chemother. 1990 Feb;34(2):302–305. doi: 10.1128/aac.34.2.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Patterson J. E., Zervos M. J. Susceptibility and bactericidal activity studies of four beta-lactamase-producing enterococci. Antimicrob Agents Chemother. 1989 Feb;33(2):251–253. doi: 10.1128/aac.33.2.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rhinehart E., Smith N. E., Wennersten C., Gorss E., Freeman J., Eliopoulos G. M., Moellering R. C., Jr, Goldmann D. A. Rapid dissemination of beta-lactamase-producing, aminoglycoside-resistant Enterococcus faecalis among patients and staff on an infant-toddler surgical ward. N Engl J Med. 1990 Dec 27;323(26):1814–1818. doi: 10.1056/NEJM199012273232606. [DOI] [PubMed] [Google Scholar]
  20. Rouch D. A., Messerotti L. J., Loo L. S., Jackson C. A., Skurray R. A. Trimethoprim resistance transposon Tn4003 from Staphylococcus aureus encodes genes for a dihydrofolate reductase and thymidylate synthetase flanked by three copies of IS257. Mol Microbiol. 1989 Feb;3(2):161–175. doi: 10.1111/j.1365-2958.1989.tb01805.x. [DOI] [PubMed] [Google Scholar]
  21. Wanger A. R., Murray B. E. Comparison of enterococcal and staphylococcal beta-lactamase plasmids. J Infect Dis. 1990 Jan;161(1):54–58. doi: 10.1093/infdis/161.1.54. [DOI] [PubMed] [Google Scholar]
  22. Zervos M. J., Schaberg D. R. Reversal of the in vitro susceptibility of enterococci to trimethoprim-sulfamethoxazole by folinic acid. Antimicrob Agents Chemother. 1985 Sep;28(3):446–448. doi: 10.1128/aac.28.3.446. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES