Abstract
Escherichia coli B/r possesses two active transport systems for l-arabinose, both of which are regulated by araC, the regulatory gene for the l-arabinose operon. The system with the higher affinity for l-arabinose has a Km for initial uptake of l-arabinose of 8.3 × 10−6m; the system of lower affinity has a Km of 1.0 × 10−4m. The two systems can also be distinguished by differences in their response to analogues that act as competitive inhibitors of initial uptake. d-Galactose strongly inhibits l-arabinose uptake by the high affinity system but only weakly inhibits such uptake by the low affinity system. d-Fucose, d-xylose, and β-methyl-l-arabinoside competitively inhibit the uptake of l-arabinose by both systems to approximately the same extent. d-Glucose and l-lyxose do not inhibit either system. On the basis of kinetic evidence and the properties of mutants lacking one or the other of the two systems, it has been concluded that the high affinity uptake system involves the l-arabinose binding protein. Kinetic studies have shown that the Km for l-arabinose uptake by the high affinity system resembles the Km for binding of l-arabinose by the binding protein, and both have similar Ki values for the inhibitory substrates tested. A consideration of l-arabinose transport-deficient mutants has demonstrated that the previously described araE mutants lack the low affinity system but retain the high affinity system and have normal levels of the l-arabinose binding protein. Mutants described in this communication which lack only the high affinity system either contain no detectable l-arabinose binding protein or possess an immunologically cross-reacting material that is reduced in its ability to bind l-arabinose. These observations support a role for the binding protein in l-arabinose uptake.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ames G. F., Lever J. Components of histidine transport: histidine-binding proteins and hisP protein. Proc Natl Acad Sci U S A. 1970 Aug;66(4):1096–1103. doi: 10.1073/pnas.66.4.1096. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boos W., Lengeler J., Hermann K. O., Unsöld H. J. The regulation of the beta-methylgalactoside transport system and of the galactose binding protein of Escherichia coli K12. Eur J Biochem. 1971 Apr 30;19(4):457–470. doi: 10.1111/j.1432-1033.1971.tb01336.x. [DOI] [PubMed] [Google Scholar]
- Cirillo V. P. Relationship between sugar structure and competition for the sugar transport system in Bakers' yeast. J Bacteriol. 1968 Feb;95(2):603–611. doi: 10.1128/jb.95.2.603-611.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Englesberg E., Irr J., Power J., Lee N. Positive control of enzyme synthesis by gene C in the L-arabinose system. J Bacteriol. 1965 Oct;90(4):946–957. doi: 10.1128/jb.90.4.946-957.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Epstein E., Rains D. W., Elzam O. E. RESOLUTION OF DUAL MECHANISMS OF POTASSIUM ABSORPTION BY BARLEY ROOTS. Proc Natl Acad Sci U S A. 1963 May;49(5):684–692. doi: 10.1073/pnas.49.5.684. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GROSS J., ENGLESBERG E. Determination of the order of mutational sites governing L-arabinose utilization in Escherichia coli B/r bv transduction with phage Plbt. Virology. 1959 Nov;9:314–331. doi: 10.1016/0042-6822(59)90125-4. [DOI] [PubMed] [Google Scholar]
- Hogg R. W. "In vivo" detection of L-arabinose-binding protein, CRM-negative mutants. J Bacteriol. 1971 Feb;105(2):604–608. doi: 10.1128/jb.105.2.604-608.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hogg R. W., Englesberg E. L-arabinose binding protein from Escherichia coli B-r. J Bacteriol. 1969 Oct;100(1):423–432. doi: 10.1128/jb.100.1.423-432.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin E. C. The genetics of bacterial transport systems. Annu Rev Genet. 1970;4:225–262. doi: 10.1146/annurev.ge.04.120170.001301. [DOI] [PubMed] [Google Scholar]
- Lomax M. S., Greenberg G. R. Characteristics of the deo operon: role in thymine utilization and sensitivity to deoxyribonucleosides. J Bacteriol. 1968 Aug;96(2):501–514. doi: 10.1128/jb.96.2.501-514.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Novotny C. P., Englesberg E. The L-arabinose permease system in Escherichia coli B/r. Biochim Biophys Acta. 1966 Mar 28;117(1):217–230. doi: 10.1016/0304-4165(66)90169-3. [DOI] [PubMed] [Google Scholar]
- Rosen B. P., Vasington F. D. Purification and characterization of a histidine-binding protein from Salmonella typhimurium LT-2 and its relationship to the histidine permease system. J Biol Chem. 1971 Sep 10;246(17):5351–5360. [PubMed] [Google Scholar]
- Schleif R. An L-arabinose binding protein and arabinose permeation in Escherichia coli. J Mol Biol. 1969 Nov 28;46(1):185–196. doi: 10.1016/0022-2836(69)90065-5. [DOI] [PubMed] [Google Scholar]
- Sheppard D. E., Englesberg E. Further evidence for positive control of the L-arabinose system by gene araC. J Mol Biol. 1967 May 14;25(3):443–454. doi: 10.1016/0022-2836(67)90197-0. [DOI] [PubMed] [Google Scholar]
- Singer J., Englesberg E. Arabinose transport in araC- strains of Escherichia B-r. Biochim Biophys Acta. 1971 Dec 3;249(2):498–505. doi: 10.1016/0005-2736(71)90125-8. [DOI] [PubMed] [Google Scholar]