Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Sep;85(17):6483–6487. doi: 10.1073/pnas.85.17.6483

Isolation and characterization of cDNAs coding for the beta subunit of the high-affinity receptor for immunoglobulin E.

J P Kinet 1, U Blank 1, C Ra 1, K White 1, H Metzger 1, J Kochan 1
PMCID: PMC281997  PMID: 2970642

Abstract

Among receptors that bind the Fc region of immunoglobulins ("Fc receptors"), only the one with high affinity for immunoglobulin E (IgE) is known to consist of more than a single polypeptide. In addition to the IgE-binding alpha chain, the receptor contains a single beta chain and two, disulfide-linked, gamma chains. From a cDNA library of a rat mucosal mast cell tumor, from which we recently cloned cDNAs coding for the alpha chain, we have now isolated cDNAs coding for the beta subunit. In vitro transcription-translation of the cDNA directed the synthesis of a polypeptide reactive with two distinctive anti-beta monoclonal antibodies and whose molecular weight was identical to that of authentic beta chains. Polyclonal antibodies to beta peptides expressed in Escherichia coli reacted with intact receptors and isolated beta chains. The gene encodes a protein of 243 residues with no leader sequence. A hydropathicity plot suggests that the polypeptide crosses the plasma membrane four times. The epitope recognized by one of the monoclonal antibodies was localized to the NH2 terminus; that by the other was localized to the COOH terminus. Since those antibodies react with membranes and not with intact cells, we suggest that both ends of the beta subunit are cytoplasmic. RNA transfer blots at high stringency failed to reveal mRNA for beta chains in a variety of cells (in particular, monocytes) that do not contain the high-affinity receptor for IgE.

Full text

PDF
6483

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alcaraz G., Kinet J. P., Liu T. Y., Metzger H. Further characterization of the subunits of the receptor with high affinity for immunoglobulin E. Biochemistry. 1987 May 5;26(9):2569–2575. doi: 10.1021/bi00383a024. [DOI] [PubMed] [Google Scholar]
  2. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  3. Contreras R., Cheroutre H., Degrave W., Fiers W. Simple, efficient in vitro synthesis of capped RNA useful for direct expression of cloned eukaryotic genes. Nucleic Acids Res. 1982 Oct 25;10(20):6353–6362. doi: 10.1093/nar/10.20.6353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Crowl R., Seamans C., Lomedico P., McAndrew S. Versatile expression vectors for high-level synthesis of cloned gene products in Escherichia coli. Gene. 1985;38(1-3):31–38. doi: 10.1016/0378-1119(85)90200-8. [DOI] [PubMed] [Google Scholar]
  5. Engelman D. M., Steitz T. A., Goldman A. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu Rev Biophys Biophys Chem. 1986;15:321–353. doi: 10.1146/annurev.bb.15.060186.001541. [DOI] [PubMed] [Google Scholar]
  6. Finbloom D. S., Metzger H. Isolation of cross-linked IgE-receptor complexes from rat macrophages. J Immunol. 1983 Apr;130(4):1489–1491. [PubMed] [Google Scholar]
  7. Holowka D., Gitler C., Bercovici T., Metzger H. Reaction of 5-iodonaphthyl-1-nitrene with the IgE receptor on normal and tumour mast cells. Nature. 1981 Feb 26;289(5800):806–808. doi: 10.1038/289806a0. [DOI] [PubMed] [Google Scholar]
  8. Holowka D., Metzger H. Further characterization of the beta-component of the receptor for immunoglobulin E. Mol Immunol. 1982 Feb;19(2):219–227. doi: 10.1016/0161-5890(82)90334-0. [DOI] [PubMed] [Google Scholar]
  9. Kanellopoulos J. M., Liu T. Y., Poy G., Metzger H. Composition and subunit structure of the cell receptor for immunoglobulin E. J Biol Chem. 1980 Oct 10;255(19):9060–9066. [PubMed] [Google Scholar]
  10. Kinet J. P., Metzger H., Hakimi J., Kochan J. A cDNA presumptively coding for the alpha subunit of the receptor with high affinity for immunoglobulin E. Biochemistry. 1987 Jul 28;26(15):4605–4610. doi: 10.1021/bi00389a002. [DOI] [PubMed] [Google Scholar]
  11. Kinet J. P., Perez-Montfort R., Metzger H. Covalent cross-linking of subunits of the receptor for immunoglobulin E induced by immunoprecipitation. Biochemistry. 1983 Dec 6;22(25):5729–5732. doi: 10.1021/bi00294a008. [DOI] [PubMed] [Google Scholar]
  12. Kochan J., Pettine L. F., Hakimi J., Kishi K., Kinet J. P. Isolation of the gene coding for the alpha subunit of the human high affinity IgE receptor. Nucleic Acids Res. 1988 Apr 25;16(8):3584–3584. doi: 10.1093/nar/16.8.3584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987 Oct 26;15(20):8125–8148. doi: 10.1093/nar/15.20.8125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McPhaul M., Berg P. Formation of functional asialoglycoprotein receptor after transfection with cDNAs encoding the receptor proteins. Proc Natl Acad Sci U S A. 1986 Dec;83(23):8863–8867. doi: 10.1073/pnas.83.23.8863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Minami Y., Weissman A. M., Samelson L. E., Klausner R. D. Building a multichain receptor: synthesis, degradation, and assembly of the T-cell antigen receptor. Proc Natl Acad Sci U S A. 1987 May;84(9):2688–2692. doi: 10.1073/pnas.84.9.2688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mostov K. E., Friedlander M., Blobel G. The receptor for transepithelial transport of IgA and IgM contains multiple immunoglobulin-like domains. Nature. 1984 Mar 1;308(5954):37–43. doi: 10.1038/308037a0. [DOI] [PubMed] [Google Scholar]
  17. Perez-Montfort R., Fewtrell C., Metzger H. Changes in the receptor for immunoglobulin E coincident with receptor-mediated stimulation of basophilic leukemia cells. Biochemistry. 1983 Dec 6;22(25):5733–5737. doi: 10.1021/bi00294a009. [DOI] [PubMed] [Google Scholar]
  18. Perez-Montfort R., Kinet J. P., Metzger H. A previously unrecognized subunit of the receptor for immunoglobulin E. Biochemistry. 1983 Dec 6;22(25):5722–5728. doi: 10.1021/bi00294a007. [DOI] [PubMed] [Google Scholar]
  19. Portnoy D. A., Erickson A. H., Kochan J., Ravetch J. V., Unkeless J. C. Cloning and characterization of a mouse cysteine proteinase. J Biol Chem. 1986 Nov 5;261(31):14697–14703. [PubMed] [Google Scholar]
  20. Quarto R., Metzger H. The receptor for immunoglobulin E: examination for kinase activity and as a substrate for kinases. Mol Immunol. 1986 Nov;23(11):1215–1223. doi: 10.1016/0161-5890(86)90154-9. [DOI] [PubMed] [Google Scholar]
  21. Ravetch J. V., Luster A. D., Weinshank R., Kochan J., Pavlovec A., Portnoy D. A., Hulmes J., Pan Y. C., Unkeless J. C. Structural heterogeneity and functional domains of murine immunoglobulin G Fc receptors. Science. 1986 Nov 7;234(4777):718–725. doi: 10.1126/science.2946078. [DOI] [PubMed] [Google Scholar]
  22. Shimizu A., Tepler I., Benfey P. N., Berenstein E. H., Siraganian R. P., Leder P. Human and rat mast cell high-affinity immunoglobulin E receptors: characterization of putative alpha-chain gene products. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1907–1911. doi: 10.1073/pnas.85.6.1907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Young R. A., Davis R. W. Efficient isolation of genes by using antibody probes. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1194–1198. doi: 10.1073/pnas.80.5.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES