Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1980 Dec;144(3):952–956. doi: 10.1128/jb.144.3.952-956.1980

Construction of an Escherichia coli strain unable to synthesize putrescine, spermidine, or cadaverine: characterization of two genes controlling lysine decarboxylase.

H Tabor, E W Hafner, C W Tabor
PMCID: PMC294757  PMID: 7002915

Abstract

We have previously described a polyamine-deficient strain of Escherichia coli that contained deletions in speA (arginine decarboxylase), speB (agmatine ureohydrolase), speC (ornithine decarboxylase), and speD (adenosylmethionine decarboxylase). Although this strain completely lacked putrescine and spermidine, it was still able to grow at a slow rate indefinitely on amine-deficient media. However, these cells contained some cadaverine (1,5-diaminopentane). To rule out the possibility that the presence of cadaverine permitted the growth of this strain, we isolated a mutant (cadA) that is deficient in cadaverine biosynthesis, namely, a mutant lacking lysine decarboxylase, and transduced this cadA gene into the delta (speA-speB) delta speC delta D strain. The resultant strain had essentially no cadaverine but showed the same phenotypic characteristics as the parent. Thus, these results confirm our previous findings that the polyamines are not essential for the growth of E. coli or for the replication of bacteriophages T4 and T7. We have mapped the cadA gene at 92 min; the gene order is mel cadA groE ampA purA. A regulatory gene for lysine decarboxylase (cadR) was also obtained and mapped at 46 min; the gene order is his cdd cadR fpk gyrA.

Full text

PDF
952

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachmann B. J., Low K. B. Linkage map of Escherichia coli K-12, edition 6. Microbiol Rev. 1980 Mar;44(1):1–56. doi: 10.1128/mr.44.1.1-56.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beck C. F., Ingraham J. L., Neuhard J., Thomassen E. Metabolism of pyrimidines and pyrimidine nucleosides by Salmonella typhimurium. J Bacteriol. 1972 Apr;110(1):219–228. doi: 10.1128/jb.110.1.219-228.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dion A. S., Cohen S. S. Polyamines in the synthesis of bacteriophage deoxyribonucleic acid. II. Requirement for polyamines in T4 infection of a polyamine auxotroph. J Virol. 1972 Mar;9(3):423–430. doi: 10.1128/jvi.9.3.423-430.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fuchs J. A., Karlström H. O. Mapping of nrdA and nrdB in Escherichia coli K-12. J Bacteriol. 1976 Dec;128(3):810–814. doi: 10.1128/jb.128.3.810-814.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Georgopoulos C. P., Hohn B. Identification of a host protein necessary for bacteriophage morphogenesis (the groE gene product). Proc Natl Acad Sci U S A. 1978 Jan;75(1):131–135. doi: 10.1073/pnas.75.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Guest J. R., Nice H. M. Chromosomal location of the mop (groE) gene necessary for bacteriophage morphogenesis in escherichia coli. J Gen Microbiol. 1978 Dec;109(2):329–333. doi: 10.1099/00221287-109-2-329. [DOI] [PubMed] [Google Scholar]
  7. Hammer-Jespersen K., Munch-Petersen A. Mutants of Escherichia coli unable to metabolize cytidine: isolation and characterization. Mol Gen Genet. 1973 Nov 2;126(2):177–186. doi: 10.1007/BF00330992. [DOI] [PubMed] [Google Scholar]
  8. Jones-Mortimer M. C., Kornberg H. L. Genetical analysis of fructose utilization by Escherichia coli. Proc R Soc Lond B Biol Sci. 1974 Sep 17;187(1087):121–131. doi: 10.1098/rspb.1974.0066. [DOI] [PubMed] [Google Scholar]
  9. Popkin P. S., Maas W. K. Escherichia coli regulatory mutation affecting lysine transport and lysine decarboxylase. J Bacteriol. 1980 Feb;141(2):485–492. doi: 10.1128/jb.141.2.485-492.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sabo D. L., Boeker E. A., Byers B., Waron H., Fischer E. H. Purification and physical properties of inducible Escherichia coli lysine decarboxylase. Biochemistry. 1974 Feb 12;13(4):662–670. doi: 10.1021/bi00701a005. [DOI] [PubMed] [Google Scholar]
  11. Tabor C. W., Tabor H., Hafner E. W. Escherichia coli mutants completely deficient in adenosylmethionine decarboxylase and in spermidine biosynthesis. J Biol Chem. 1978 May 25;253(10):3671–3676. [PubMed] [Google Scholar]
  12. Tabor H., Tabor C. W. Formation of 1,4-diaminobutane and of spermidine by an ornithine auxotroph of Escherichia coli grown on limiting ornithine or arginine. J Biol Chem. 1969 May 10;244(9):2286–2292. [PubMed] [Google Scholar]
  13. Tabor H., Tabor C. W., Hafner E. W. Convenient method for detecting 14CO2 in multiple samples: application to rapid screening for mutants. J Bacteriol. 1976 Oct;128(1):485–486. doi: 10.1128/jb.128.1.485-486.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES