Skip to main content
International Journal of Alzheimer's Disease logoLink to International Journal of Alzheimer's Disease
. 2011 Jan 17;2011:857368. doi: 10.4061/2011/857368

Protein Kinase C-Regulated Aβ Production and Clearance

Taehyun Kim 1, David J Hinton 1, Doo-Sup Choi 1,*
PMCID: PMC3026967  PMID: 21274428

Abstract

Alzheimer's disease (AD) is the most common form of dementia among the elderly population. AD, which is characterized as a disease of cognitive deficits, is mainly associated with an increase of amyloid β-peptide (Aβ) in the brain. A growing body of recent studies suggests that protein kinase C (PKC) promotes the production of the secretory form of amyloid precursor protein (sAPPα) via the activation of α-secretase activity, which reduces the accumulation of pathogenic Aβ levels in the brain. Moreover, activation of PKCα and mitogen-activated protein kinase (MAPK) is known to increase sAPPα. A novel type of PKC, PKCε, activates the Aβ degrading activity of endothelin converting enzyme type 1 (ECE-1), which might be mediated via the MAPK pathway as well. Furthermore, dysregulation of PKC-MAPK signaling is known to increase Aβ levels in the brain, which results in AD phenotypes. Here, we discuss roles of PKC in Aβ production and clearance and its implication in AD.

1. Introduction

Alzheimer's disease (AD) is the most common form of dementia among the elderly population [1, 2]. A major hallmark of AD is the abnormal processing and accumulation of neurite plaques containing amyloid β-peptide (Aβ) in the brain [3, 4]. Amyloid precursor protein (APP) is mainly cleaved by the α-secretase enzyme (Figure 1), producing the secretory form of amyloid precursor protein (sAPP; β-amyloid (Aβ) 17–42), which is soluble and nontoxic [5]. However, when APP is cleaved by β- and γ-secretase enzymes [6], it leads to the formation of Aβ1–40 and Aβ1–42, which are insoluble unlike sAPP, and results in the accumulation of amyloid plaques [7]. In the production of Aβ1–42, the Aβ1–42/Aβ1–40 ratio is associated with the amount of insoluble Aβ aggregation [8]. On the other hand, the abnormal hyperphosphorylation of tau results in insoluble fibrils and neurofibillary tangels in the brain [9, 10]. Thus, an understanding of the pathological processes of APP and tau in AD is a critical therapeutic target in preventing or delaying AD in humans [1113]. Here, we review the role of protein kinase C (PKC) in Aβ production and clearance through α-secretase or Aβ-degrading enzyme activity. Among several PKCs, we focus on the role of PKCε in Aβ levels because several recent findings have demonstrated that the activation or overexpression of PKCε promotes the Aβ degradation activity of endothelin converting enzyme type 1 (ECE-1) [14, 15].

Figure 1.

Figure 1

Amyloid metabolism by secretases and Aβ-degradation enzymes (ECE-1, IDE, NEP). Aβ-degrading proteases play an important role in regulating Aβ levels via known cleavage sites (adapted from [1, 16, 17]).

2. PKC and Aβ Plaques

PKC is a phospholipid-dependent serine/threonine kinase and consists of at least 12 isoenzymes [18, 19]. PKCs can be classified into three subfamilies based on their protein structure and second messenger requirements: conventional (or classical), novel, and atypical. Conventional PKCs contain the α, β1, β2, and γ isoforms and require Ca2+, diacylglycerol (DAG), and a phospholipid such as phosphatidylcholine for activation. Novel PKCs include the δ, ε, η, θ, and μ isoforms and require DAG or phospholipids but do not require Ca2+ for activation. On the other hand, atypical PKCs consisting of protein kinase ζ, ι, and λ isoforms do not require either Ca2+ or diacylglycerol for activation [20].

Numerous studies have suggested that phorbol 12-myristate 13-acetate (PMA), a nonspecific PKC activator, is capable of lowering secreted Aβ levels in neurons [2124]. Based on these results, several studies have attempted to identify precisely which PKC isozyme actually regulates APP processing. The overexpression of PKCα or PKCε, but not PKCθ, has been shown to induce APP secretion from cells [25]. Interestingly, specific inhibition of either PKCα or PKCθ in CHO cells expressing APP695 was associated with a loss of PMA-mediated APP secretion [26]. In addition, experiments with a dominant negative fragment of PKCε reduced phorbol ester-induced secretion of sAPPα [15, 27]. However, even though intraparenchymal administration of phorbol esters reduces Aβ levels and decreases amyloid plaque density in mice expressing an amyloidogenic variant of human APP, α-secretase activity is not increased in the brain [28]. This raises the possibility that PKC reduces Aβ levels in vivo by another mechanism.

3. Aβ Clearance and Peptidases

The accumulation of Aβ in the brain is one of the main symptoms of AD [3]. An abnormality in the proteolytic degradation of Aβ appears to be associated with the progression of AD [29]. As shown in Figure 1, several proteases that degrade Aβ in mice include insulin-degrading enzyme (IDE), neprilysin (NEP), and endothelin-converting enzyme (ECE) 1 and 2 [16, 30]. IDE (insulysin) is a ~110 KDa thiol zinc-metalloendopeptidase which is expressed in the cytosol, peroxisomes, and endosomes and on cell surfaces, and it is the major enzyme responsible for insulin degradation in vitro [31]. However, IDE has also been found to degrade Aβ in neuronal and microglial cells [32] and to eliminate the neurotoxic effects of Aβ [33]. Consistently, IDE-null mice showed increased levels of Aβ in the brain [34]. NEP is another key player in Aβ clearance [35]. In the brain, NEP is mainly expressed on neuronal plasma membranes [36]. NEP-null mice show defects in both the degradation of exogenously administered Aβ and in the metabolic suppression of endogenous Aβ levels in a gene dose-dependent manner [37]. The importance of these zinc-metalloendopeptidases in Aβ clearance is demonstrated by the fact that the transgenic overexpression of IDE or NEP in neurons significantly reduces Aβ levels and plaque associated with AD pathology [38]. Angiotensin-converting enzyme (ACE) is a membrane-bound zinc metalloprotease [39]. ACE mainly converts angiotensin I to angiotensin II, which is critical in the regulation of blood pressure, body fluid, and sodium homeostasis [40]. Recent studies indicate that ACE expression also promotes the degradation of Aβ [41].

Several receptor-mediated Aβ clearance mechanisms have already been examined [42]. Low-density lipoprotein receptor-related protein (LRP) and the receptor for advanced glycation end products (RAGE) regulate Aβ levels across the blood-brain barrier [43]. Both LRP and RAGE are multiligand cell surface receptors that mediate the clearance of a large number of proteins in addition to Aβ. LRP mainly removes Aβ from the brain to the periphery whereas RAGE appears to influx Aβ back to the brain from the periphery [42, 43].

4. Endothelin-Converting Enzymes (ECEs)

ECEs are a class of type II transmembrane metalloproteases, which convert pro-ET into endothelin [44]. Two different ECEs, including ECE-1 and ECE-2, are expressed in brain regions related to AD [45, 46]. Although ECE-1 is abundantly expressed in vascular endothelial cells [47], it is also expressed in nonvascular cells, including hippocampal and neocortical pyramidal neurons, cerebellar Purkinje cells, and astrocytes [48]. ECE-2 is also expressed in the brain, especially in several subpopulations of neurons in the thalamus, hypothalamus, amygdala, and hippocampus [46]. Studies have demonstrated that ECE-1 is a key enzyme for the degradation of Aβ in the brain [49]. The in vivo function of ECE has been examined in ECE-1 heterozygous (+/−) and ECE-2 null (−/−) mice. In both cases, levels of Aβ were increased compared with wild-type mice, suggesting that these ECEs are an important Aβ-degrading enzyme in vivo [50]. Another study demonstrated that NEP (−/−)/ECE-1 (+/−) or NEP (−/−)/ECE-2 (−/−) mice have increased accumulation of both Aβ1–40 and Aβ1–42 in the brain [51]. Interestingly, a genetic variant of human ECE-1 (ECE1B C-338A) with increased promoter activity was associated with a reduced risk of sporadic AD in a French Caucasian population [45]. ECE-1 degrades synthetic Aβ levels in vitro [50] and is the main ECE for Aβ degradation. Recently, the expression of ECE-2 has also been shown to be a relevant Aβ-degrading enzyme and is dramatically increased at both mRNA and protein levels of patients with AD [52].

Endothelin-1 (ET-1) is the major peptide formed by ECE-1, and its cellular actions are mediated via two G-protein coupled receptors, ETA and ETB, which are widely distributed in the brain [53]. ET-1 levels appear elevated in postmortem brains from patients with Alzheimer-type dementia [54]. A study indicates that ET-1 is increased in brain microvessels isolated from patients with AD and promotes the survival of brain neurons [55]. However, this effect might be associated with the protective actions of ET-1 in vivo, rather than contributing to the AD pathology [56].

5. PKCε, MAPK, and ETS Pathways

The activation of PKCs has suggested a neuroprotective function in animals [57]. PKC activators can also prevent the production of Aβ and extend the survival of AD transgenic mice [58]. However, chronic treatment of nonspecific PKC activators such as phorbol esters at high doses could increase levels of Aβ by decreasing PKC function or increasing APP synthesis [59]. These studies also suggest that the chronic application of phorbol esters may differentially regulate the function of PKC isoforms, downregulating PKCα and upregulating PKCε. There are several mechanisms by which the activation of PKCs could regulate the reduction of Aβ. Interestingly, our recent study demonstrates that overexpression of human PKCε reduces Aβ levels significantly in the brain (Figure 2). As shown in Figure 3, activation of PKCs including PKCα is known to promote α-secretase activity [25, 60], while activation or overexpression of PKCε stimulates Aβ-degrading activity of ECE-1, probably via MAPK-dependent Ets-1 pathway [14, 15]. MAPK is also known to activate α-secretase activity independently [61] or through PKC activation [6264]. Since MAPK can activate Ets-1 and 2 [65], it is possible that PKCε-mediated MAPK could control ETS pathways and thus regulate ECE expression in the brain. Additionally, ETS transcription factors play a key role in cell growth, differentiation, and survival [66]. ETS proteins form complexes and act synergistically with other transcription factor families such as PEA3 or AP-1 [67]. Ets-1 has been known to be involved in angiogenesis [68]. However, another research indicates that upregulation of Ets-2 is closely associated with AD neurodegenerative lesions in the brain [69].

Figure 2.

Figure 2

Overexpression of PKCε reduces the amyloid plaque burden and inhibits Aβ accumulation in brain parenchyma. (a) Thioflavin S staining and anti-Aβ immunostaining revealed fewer plaques and Aβ immunoreactive deposits in the hippocampus and neocortex in APPInd/PKCεTg1 mice than in APPInd mice. Scale bar: 200 μm. Quantification of (b) thioflavin S staining and (c) Aβ deposits in hippocampus and cortex sections (adapted from [14]). *P < .05 by two-tailed t-test.

Figure 3.

Figure 3

Schematic summary of role of PKC-MAPK-dependent Aβ production and clearance. PKCα upregulates α-secretase activity while PKCε stimulates Aβ-degrading activity of ECE-1, probably via MAPK-dependent Ets-1 pathway. MAPK is also known to activate α-secretase activity independently or through PKC activation.

6. Conclusion

In Alzheimer's disease (AD), it has long been known that activated PKCs reduce Aβ levels in the brain. PKC is also suggested to be a functional biomarker of AD [70]. The steady-state level of Aβ depends on a balance between production and clearance. In addition to Aβ production, several researchers suggest that enzyme-mediated degradation of Aβ is also critical for the regulation of Aβ levels [71]. Especially, since PKC is a key modulator in Aβ production or clearance in the brain [15, 58, 72], regulation of PKC activity could be a useful treatment target for AD [14, 73, 74]. However, the functional relevance of each PKC isoform in regulating Aβ levels in AD remains to be studied. Moreover, while α-secretase-mediated cleavage of APP via PKC isoforms reduces amyloid, detailed mechanisms of how PKC isoforms activate the enzyme-degradation system await further investigation. Therefore, PKC isoform-specific ligands or viral-mediated overexpression of PKC isoform as well as specific shRNAs approaches may unveil detailed molecular bases that underlie PKC-regulated Aβ clearance.

Acknowledgments

The authors thank D. Frederixon for her help in preparing the paper. This research was supported by the Samuel Johnson Foundation for Genomics of Addiction Program at Mayo Clinic, Rochester (DSC).

References

  • 1.Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiological Reviews. 2001;81(2):741–766. doi: 10.1152/physrev.2001.81.2.741. [DOI] [PubMed] [Google Scholar]
  • 2.Sperling RA, Dickerson BC, Pihlajamaki M, et al. Functional alterations in memory networks in early alzheimer’s disease. NeuroMolecular Medicine. 2010;12(1):27–43. doi: 10.1007/s12017-009-8109-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Marcello E, Epis R, Di Luca M. Amyloid flirting with synaptic failure: towards a comprehensive view of Alzheimer’s disease pathogenesis. European Journal of Pharmacology. 2008;585(1):109–118. doi: 10.1016/j.ejphar.2007.11.083. [DOI] [PubMed] [Google Scholar]
  • 4.Gabelle A, Roche S, Gény C, et al. Correlations between soluble α/β forms of amyloid precursor protein and Aβ38, 40, and 42 in human cerebrospinal fluid. Brain Research. 2010;1357:175–183. doi: 10.1016/j.brainres.2010.08.022. [DOI] [PubMed] [Google Scholar]
  • 5.De Strooper B, Simons M, Multhaup G, Van Leuven F, Beyreuther K, Dotti CG. Production of intracellular amyloid-containing fragments in hippocampal neurons expressing human amyloid precursor protein and protection against amyloidogenesis by subtle amino acid substitutions in the rodent sequence. The EMBO Journal. 1995;14(20):4932–4938. doi: 10.1002/j.1460-2075.1995.tb00176.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Fortini ME. γ-secretase-mediated proteolysis in cell-surface-receptor signalling. Nature Reviews Molecular Cell Biology. 2002;3(9):673–684. doi: 10.1038/nrm910. [DOI] [PubMed] [Google Scholar]
  • 7.Tiraboschi P, Hansen LA, Thal LJ, Corey-Bloom J. The importance of neuritic plaques and tangles to the development and evolution of AD. Neurology. 2004;62(11):1984–1989. doi: 10.1212/01.wnl.0000129697.01779.0a. [DOI] [PubMed] [Google Scholar]
  • 8.Mucke L, Masliah E, Yu GQ, et al. High-level neuronal expression of Aβ1−42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. Journal of Neuroscience. 2000;20(11):4050–4058. doi: 10.1523/JNEUROSCI.20-11-04050.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Johnson GVW, Stoothoff WH. Tau phosphorylation in neuronal cell function and dysfunction. Journal of Cell Science. 2004;117(24):5721–5729. doi: 10.1242/jcs.01558. [DOI] [PubMed] [Google Scholar]
  • 10.Ittner LM, Ke YD, Delerue F, et al. Dendritic function of tau mediates amyloid-β toxicity in alzheimer's disease mouse models. Cell. 2010;142(3):387–397. doi: 10.1016/j.cell.2010.06.036. [DOI] [PubMed] [Google Scholar]
  • 11.Wolfe MS. Selective amyloid-β lowering agents. BMC Neuroscience. 2008;9(2, article S4) doi: 10.1186/1471-2202-9-S2-S4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Neugroschl J, Sano M. An update on treatment and prevention strategies for Alzheimer’s disease. Current Neurology and Neuroscience Reports. 2009;9(5):368–376. doi: 10.1007/s11910-009-0054-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.He G, Luo W, Li P, et al. Gamma-secretase activating protein is a therapeutic target for Alzheimer's disease. Nature. 2010;467(7311):95–98. doi: 10.1038/nature09325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Choi DS, Wang D, Yu GQ, et al. PKCε increases endothelin converting enzyme activity and reduces amyloid plaque pathology in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(21):8215–8220. doi: 10.1073/pnas.0509725103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Zhu G, Wang D, Lin Y-H, McMahon T, Koo EH, Messing RO. Protein kinase C ε suppresses Aβ production and promotes activation of α-secretase. Biochemical and Biophysical Research Communications. 2001;285(4):997–1006. doi: 10.1006/bbrc.2001.5273. [DOI] [PubMed] [Google Scholar]
  • 16.Eckman EA, Eckman CB. Aβ-degrading enzymes: modulators of Alzheimer’s disease pathogenesis and targets for therapeutic intervention. Biochemical Society Transactions. 2005;33(5):1101–1105. doi: 10.1042/BST20051101. [DOI] [PubMed] [Google Scholar]
  • 17.De Strooper B, Vassar R, Golde T. The secretases: enzymes with therapeutic potential in Alzheimer disease. Nature Review Neurology. 2010;6:99–107. doi: 10.1038/nrneurol.2009.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 1992;258(5082):607–614. doi: 10.1126/science.1411571. [DOI] [PubMed] [Google Scholar]
  • 19.Hofmann J. The potential for isoenzyme-selective modulation of protein kinase C. FASEB Journal. 1997;11(8):649–669. doi: 10.1096/fasebj.11.8.9240967. [DOI] [PubMed] [Google Scholar]
  • 20.Mellor H, Parker PJ. The extended protein kinase C superfamily. Biochemical Journal. 1998;332(2):281–292. doi: 10.1042/bj3320281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Buxbaum JD, Oishi M, Chen HI, et al. Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer β/A4 amyloid protein precursor. Proceedings of the National Academy of Sciences of the United States of America. 1992;89(21):10075–10078. doi: 10.1073/pnas.89.21.10075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Hung AY, Haass C, Nitsch RM, et al. Activation of protein kinase C inhibits cellular production of the amyloid β-protein. The Journal of Biological Chemistry. 1993;268(31):22959–22962. [PubMed] [Google Scholar]
  • 23.Savage MJ, Trusko SP, Howland DS, et al. Turnover of amyloid β-protein in mouse brain and acute reduction of its level by phorbol ester. Journal of Neuroscience. 1998;18(5):1743–1752. doi: 10.1523/JNEUROSCI.18-05-01743.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Fu H, Dou J, Li W, et al. Promising multifunctional anti-Alzheimer’s dimer bis(7)-Cognitin acting as an activator of protein kinase C regulates activities of α-secretase and BACE-1 concurrently. European Journal of Pharmacology. 2009;623(1-3):14–21. doi: 10.1016/j.ejphar.2009.09.013. [DOI] [PubMed] [Google Scholar]
  • 25.Kinouchi T, Sorimachi H, Maruyama K, et al. Conventional protein kinase C (PKC)-α and novel PKCε, but not -δ, increase the secretion of an N-terminal fragment of Alzheimer's disease amyloid precursor protein from PKC cDNA transfected 3Y1 fibroblasts. FEBS Letters. 1995;364(2):203–206. doi: 10.1016/0014-5793(95)00392-m. [DOI] [PubMed] [Google Scholar]
  • 26.Jolly-Tornetta C, Wolf BA. Regulation of amyloid precursor protein (APP) secretion by protein kinase Cα in human Ntera 2 neurons (NT2N) Biochemistry. 2000;39(25):7428–7435. doi: 10.1021/bi0003846. [DOI] [PubMed] [Google Scholar]
  • 27.Yeon SW, Jung MW, Ha MJ, et al. Blockade of PKCε activation attenuates phorbol ester-induced increase of α-secretase-derived secreted form of amyloid precursor protein. Biochemical and Biophysical Research Communications. 2001;280(3):782–787. doi: 10.1006/bbrc.2000.4181. [DOI] [PubMed] [Google Scholar]
  • 28.Savage MJ, Trusko SP, Howland DS, et al. Turnover of amyloid β-protein in mouse brain and acute reduction of its level by phorbol ester. Journal of Neuroscience. 1998;18(5):1743–1752. doi: 10.1523/JNEUROSCI.18-05-01743.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Selkoe DJ, Schenk D. Alzheimer’s disease: molecular understanding predicts amyloid-based therapeutics. Annual Review of Pharmacology and Toxicology. 2003;43:545–584. doi: 10.1146/annurev.pharmtox.43.100901.140248. [DOI] [PubMed] [Google Scholar]
  • 30.Selkoe DJ. Clearing the brain’s amyloid cobwebs. Neuron. 2001;32(2):177–180. doi: 10.1016/s0896-6273(01)00475-5. [DOI] [PubMed] [Google Scholar]
  • 31.Duckworth WC, Bennett RG, Hamel FG. Insulin degradation: progress and potential. Endocrine Reviews. 1998;19(5):608–624. doi: 10.1210/edrv.19.5.0349. [DOI] [PubMed] [Google Scholar]
  • 32.Vekrellis K, Ye Z, Qiu WQ, et al. Neurons regulate extracellular levels of amyloid β-protein via proteolysis by insulin-degrading enzyme. Journal of Neuroscience. 2000;20(5):1657–1665. doi: 10.1523/JNEUROSCI.20-05-01657.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Mukherjee A, Song ES, Kihiko-Ehmann M, et al. Insulysin hydrolyzes amyloid β peptides to products that are neither neurotoxic nor deposit on amyloid plaques. Journal of Neuroscience. 2000;20(23):8745–8749. doi: 10.1523/JNEUROSCI.20-23-08745.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Farris W, Mansourian S, Chang Y, et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(7):4162–4167. doi: 10.1073/pnas.0230450100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Iwata N, Tsubuki S, Takaki Y, et al. Identification of the major Aβ-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nature Medicine. 2000;6(2):143–150. doi: 10.1038/72237. [DOI] [PubMed] [Google Scholar]
  • 36.Barnes K, Turner AJ, Kenny AJ. Membrane localization of endopeptidase-24.11 and peptidyl dipeptidase A (angiotensin converting enzyme) in the pig brain: a study using subcellular fractionation and electron microscopic immunocytochemistry. Journal of Neurochemistry. 1992;58(6):2088–2096. doi: 10.1111/j.1471-4159.1992.tb10950.x. [DOI] [PubMed] [Google Scholar]
  • 37.Iwata N, Tsubuki S, Takaki Y, et al. Metabolic regulation of brain Aβ by neprilysin. Science. 2001;292(5521):1550–1552. doi: 10.1126/science.1059946. [DOI] [PubMed] [Google Scholar]
  • 38.Leissring MA, Farris W, Chang AY, et al. Enhanced proteolysis of β-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron. 2003;40(6):1087–1093. doi: 10.1016/s0896-6273(03)00787-6. [DOI] [PubMed] [Google Scholar]
  • 39.Guy JL, Lambert DW, Warner FJ, Hooper NM, Turner AJ. Membrane-associated zinc peptidase families: comparing ACE and ACE2. Biochimica et Biophysica Acta. 2005;1751(1):2–8. doi: 10.1016/j.bbapap.2004.10.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. The Journal of Clinical Investigation. 1990;86(4):1343–1346. doi: 10.1172/JCI114844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Hemming ML, Selkoe DJ. Amyloid β-protein is degraded by cellular angiotensin-converting enzyme (ACE) and elevated by an ACE inhibitor. The Journal of Biological Chemistry. 2005;280(45):37644–37650. doi: 10.1074/jbc.M508460200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Tanzi RE, Moir RD, Wagner SL. Clearance of Alzheimer’s Aβ peptide: the many roads to perdition. Neuron. 2004;43(5):605–608. doi: 10.1016/j.neuron.2004.08.024. [DOI] [PubMed] [Google Scholar]
  • 43.Zlokovic BV. Clearing amyloid through the blood-brain barrier. Journal of Neurochemistry. 2004;89(4):807–811. doi: 10.1111/j.1471-4159.2004.02385.x. [DOI] [PubMed] [Google Scholar]
  • 44.Turner AJ, Murphy LJ. Molecular pharmacology of endothelin converting enzymes. Biochemical Pharmacology. 1996;51(2):91–102. doi: 10.1016/0006-2952(95)02036-5. [DOI] [PubMed] [Google Scholar]
  • 45.Funalot B, Ouimet T, Claperon A, et al. Endothelin-converting enzyme-1 is expressed in human cerebral cortex and protects against Alzheimer’s disease. Molecular Psychiatry. 2004;9(12):p. 1059. doi: 10.1038/sj.mp.4001584. [DOI] [PubMed] [Google Scholar]
  • 46.Yanagisawa H, Hammer RE, Richardson JA, et al. Disruption of ECE-1 and ECE-2 reveals a role for endothelin-converting enzyme-2 in murine cardiac development. The Journal of Clinical Investigation. 2000;105(10):1373–1382. doi: 10.1172/JCI7447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Korth P, Bohle RM, Corvol P, Pinet F. Cellular distribution of endothelin-converting enzyme-1 in human tissues. Journal of Histochemistry and Cytochemistry. 1999;47(4):447–461. doi: 10.1177/002215549904700403. [DOI] [PubMed] [Google Scholar]
  • 48.Sluck JM, Lin RCS, Katolik LI, Jeng AY, Lehmann JC. Endothelin converting enzyme-1-, endothelin-1-, and endothelin-3-like immunoreactivity in the rat brain. Neuroscience. 1999;91(4):1483–1497. doi: 10.1016/s0306-4522(98)00692-7. [DOI] [PubMed] [Google Scholar]
  • 49.Eckman EA, Reed DK, Eckman CB. Degradation of the Alzheimer’s amyloid β peptide by endothelin-converting enzyme. The Journal of Biological Chemistry. 2001;276(27):24540–24548. doi: 10.1074/jbc.M007579200. [DOI] [PubMed] [Google Scholar]
  • 50.Eckman EA, Watson M, Marlow L, Sambamurti K, Eckman CB. Alzheimer’s disease β-amyloid peptide is increased in mice deficient in endothelin-converting enzyme. The Journal of Biological Chemistry. 2003;278(4):2081–2084. doi: 10.1074/jbc.C200642200. [DOI] [PubMed] [Google Scholar]
  • 51.Eckman EA, Adams SK, Troendle FJ, et al. Regulation of steady-state β-amyloid levels in the brain by neprilysin and endothelin-converting enzyme but not angiotensin-converting enzyme. The Journal of Biological Chemistry. 2006;281(41):30471–30478. doi: 10.1074/jbc.M605827200. [DOI] [PubMed] [Google Scholar]
  • 52.Palmer JC, Baig S, Kehoe PG, Love S. Endothelin-converting enzyme-2 is increased in Alzheimer’s disease and up-regulated by Aβ. American Journal of Pathology. 2009;175(1):262–270. doi: 10.2353/ajpath.2009.081054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Naidoo V, Naidoo S, Mahabeer R, Raidoo DM. Cellular distribution of the endothelin system in the human brain. Journal of Chemical Neuroanatomy. 2004;27(2):87–98. doi: 10.1016/j.jchemneu.2003.12.002. [DOI] [PubMed] [Google Scholar]
  • 54.Minami M, Kimura M, Iwamoto N, Arai H. Endothelin-1-like immunoreactivity in cerebral cortex of Alzheimer-type dementia. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 1995;19(3):509–513. doi: 10.1016/0278-5846(95)00031-p. [DOI] [PubMed] [Google Scholar]
  • 55.Luo J, Grammas P. Endothelin-1 is elevated in Alzheimer's disease brain microvessels and is neuroprotective. Journal of Alzheimer's Disease. 2010;21(3):887–896. doi: 10.3233/JAD-2010-091486. [DOI] [PubMed] [Google Scholar]
  • 56.Arundine M, Tymianski M. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium. 2003;34(4-5):325–337. doi: 10.1016/s0143-4160(03)00141-6. [DOI] [PubMed] [Google Scholar]
  • 57.Sun MK, Hongpaisan J, Nelson TJ, Alkon DL. Poststroke neuronal rescue and synaptogenesis mediated in vivo by protein kinase C in adult brains. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(36):13620–13625. doi: 10.1073/pnas.0805952105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Etcheberrigaray R, Matzel LD, Lederhendler II, Alkon DL. Classical conditioning and protein kinase C activation regulate the same single potassium channel in Hermissenda crassicornis photoreceptors. Proceedings of the National Academy of Sciences of the United States of America. 1992;89(15):7184–7188. doi: 10.1073/pnas.89.15.7184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.da Cruz E Silva OAB, Rebelo S, Vieira SI, Gandy S, da Cruz E Silva EF, Greengard P. Enhanced generation of Alzheimer’s amyloid-β following chronic exposure to phorbol ester correlates with differential effects on alpha and epsilon isozymes of protein kinase C. Journal of Neurochemistry. 2009;108(2):319–330. doi: 10.1111/j.1471-4159.2008.05770.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Roberts SB, Ripellino JA, Ingalls KM, Robakis NK, Felsenstein KM. Non-amyloidogenic cleavage of the β-amyloid precursor protein by an integral membrane metalloendopeptidase. The Journal of Biological Chemistry. 1994;269(4):3111–3116. [PubMed] [Google Scholar]
  • 61.Bandyopadhyay S, Hartley DM, Cahill CM, Lahiri DK, Chattopadhyay N, Rogers JT. Interleukin-1α stimulates non-amyloidogenic pathway by α-secretase (ADAM-10 and ADAM-17) cleavage of APP in human astrocytic cells involving p38 MAP kinase. Journal of Neuroscience Research. 2006;84(1):106–118. doi: 10.1002/jnr.20864. [DOI] [PubMed] [Google Scholar]
  • 62.Racchi M, Mazzucchelli M, Pascale A, Sironi M, Govoni S. Role of protein kinase Cα in the regulated secretion of the amyloid precursor protein. Molecular Psychiatry. 2003;8(2):209–216. doi: 10.1038/sj.mp.4001204. [DOI] [PubMed] [Google Scholar]
  • 63.Buxbaum JD, Koo EH, Greengard P. Protein phosphorylation inhibits production of Alzheimer amyloid β/A4 peptide. Proceedings of the National Academy of Sciences of the United States of America. 1993;90(19):9195–9198. doi: 10.1073/pnas.90.19.9195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Mills J, Charest DL, Lam F, et al. Regulation of amyloid precursor protein catabolism involves the mitogen-activated protein kinase signal transduction pathway. Journal of Neuroscience. 1997;17(24):9415–9422. doi: 10.1523/JNEUROSCI.17-24-09415.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Foulds CE, Nelson ML, Blaszczak AG, Graves BJ. Ras/mitogen-activated protein kinase signaling activates Ets-1 and Ets-2 by CBP/p300 recruitment. Molecular and Cellular Biology. 2004;24(24):10954–10964. doi: 10.1128/MCB.24.24.10954-10964.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Sharrocks AD. The ETS-domain transcription factor family. Nature Reviews Molecular Cell Biology. 2001;2(11):827–837. doi: 10.1038/35099076. [DOI] [PubMed] [Google Scholar]
  • 67.Sementchenko VI, Watson DK. Ets target genes: past, present and future. Oncogene. 2000;19(55):6533–6548. doi: 10.1038/sj.onc.1204034. [DOI] [PubMed] [Google Scholar]
  • 68.Nakano T, Abe M, Tanaka K, Shineha R, Satomi S, Sato Y. Angiogenesis inhibition by transdominant mutant Ets-1. Journal of Cellular Physiology. 2000;184(2):255–262. doi: 10.1002/1097-4652(200008)184:2<255::AID-JCP14>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  • 69.Helguera P, Pelsman A, Pigino G, Wolvetang E, Head E, Busciglio J. ets-2 promotes the activation of a mitochondrial death pathway in down’s syndrome neurons. Journal of Neuroscience. 2005;25(9):2295–2303. doi: 10.1523/JNEUROSCI.5107-04.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Wang YJ, Zhou HD, Zhou XF. Clearance of amyloid-beta in Alzheimer’s disease: progress, problems and perspectives. Drug Discovery Today. 2006;11(19-20):931–938. doi: 10.1016/j.drudis.2006.08.004. [DOI] [PubMed] [Google Scholar]
  • 71.Skovronsky DM, Moore DB, Milla ME, Doms RW, Lee VM-Y. Protein kinase C-dependent α-secretase competes with β-secretase for cleavage of amyloid-β precursor protein in the trans-Golgi network. The Journal of Biological Chemistry. 2000;275(4):2568–2575. doi: 10.1074/jbc.275.4.2568. [DOI] [PubMed] [Google Scholar]
  • 72.Weeraratna AT, Kalehua A, DeLeon I, et al. Alterations in immunological and neurological gene expression patterns in Alzheimer’s disease tissues. Experimental Cell Research. 2007;313(3):450–461. doi: 10.1016/j.yexcr.2006.10.028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Khan TK, Nelson TJ, Verma VA, Wender PA, Alkon DL. A cellular model of Alzheimer’s disease therapeutic efficacy: PKC activation reverses Aβ-induced biomarker abnormality on cultured fibroblasts. Neurobiology of Disease. 2009;34(2):332–339. doi: 10.1016/j.nbd.2009.02.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Nelson TJ, Cui C, Luo Y, Alkon DL. Reduction of β-amyloid levels by novel protein kinase Ċactivators. The Journal of Biological Chemistry. 2009;284(50):34514–34521. doi: 10.1074/jbc.M109.016683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from International Journal of Alzheimer's Disease are provided here courtesy of Wiley

RESOURCES