Table 1.
Model comparisons, fit statistics, and class proportions based on autism symptoms.
Model | Factor/ Class # |
LL | Par | BIC | Comparison | Class Proportions |
---|---|---|---|---|---|---|
LCA | 2 class | −134017 | 25 | 268256 | .57, .43 | |
3 class | −127148 | 34 | 254598 | .31, .32, .37 | ||
4 class | −124544 | 43 | 249468 | .17, .20, .30, .33 | ||
5 class | −123150 | 52 | 246759 | .10, .13, .21, .25, .31 | ||
6 class | −122499 | 61 | 245537 | Best fitting LCA | .09, .11, .19, .19, .12, .30 | |
EFA | 1 factor | −123767 | 24 | 247746 | ||
2 factor | −122803 | 31 | 245881 | Parsimonious EFA | ||
3 factor | −122575 | 37 | 245478 | Best fitting EFA | ||
FM | 2 factor 1 class | −122994 | 25 | 246208 | ||
2 factor 2 class | −122055 | 35 | 244420 | Parsimonious model | .63, .37 | |
2 factor 3 class | −118305 | 47 | 237027 | Best overall fit | .14, .56, .30 |
Note. Lower values of the Bayesian Information Criterion (BIC) indicate better fit. Akaike Information Criterion and sample-adjusted BIC showed an identical pattern. Factor mixture models specified strong measurement invariance. Bold designates classes with predominantly Autism Spectrum Disorder-affected youth.
EFA=Exploratory Factor Analysis, FM = Factor Mixture model analysis, LCA=Latent Class Analysis, LL = Log Likelihood, Par = No. of estimated parameters.