Abstract
Through the combined study of model organisms, cell biology, cell signaling and medical genetics we have significantly increased our understanding of the structure and functions of the vertebrate cilium. This ancient organelle has now emerged as a crucial component of certain signaling and sensory perception pathways in both developmental and homeostatic contexts. Here, we provide a snapshot of the structure, function and distribution of the vertebrate cilium and of the pathologies that are associated with its dysfunction.
Keywords: Cilia, IFT, Signaling
Introduction
Once considered to be vestigial organelles, cilia are microtubule-based structures found in unicellular flagellates and in multicellular organisms and have recently been discovered to have a profound influence on tissue development and homeostasis. Although the presence of cilia is restricted to specific cell types in invertebrates, their near ubiquitous localization on the apical surface of most vertebrate cell types suggests that this ancient organelle has evolved to facilitate a broad range of functions. Recent findings in humans and in model organisms have fuelled a renewed interest in the cilium as a sensory hub and as generator of fluid flow; both of these functions underpin fascinating developmental processes, such as the initiation of left-right (L-R) asymmetry (Hirokawa et al., 2006), as well as certain disease pathologies, such as the modulation of cancer progression and metastasis (Han et al., 2009; Wong et al., 2009). Consistent with the developmental roles of the cilium in vertebrates in fluid flow generation, mechanosensation, osmosensation, olfaction, photoreception, chemosensation and thermosensation (Berbari et al., 2009; Hirokawa et al., 2006), and based on the diverse range of cell types that can form a cilium, the clinical features of several human disorders have been attributed to dysfunctional cilia. In this poster article, we provide an overview of ciliary biology with an emphasis on signaling pathways and modes of ciliary dysfunction in which selected ciliary expression is associated with specific developmental events and disease states.
Ciliary biology
Tethered to most differentiated vertebrate cell types (Gerdes et al., 2009; Olsen, 2005), cilia are microtubule-based structures that can be classified as immotile 9+0 primary cilia or motile 9+2 cilia, depending on the presence of a central microtubule pair that is surrounded by nine pairs of microtubule doublets (Satir and Christensen, 2007). However, exceptions to these traditional classifications do occur; renal cilia have a motile 9+0 configuration (Kramer-Zucker et al., 2005), motile cilia of the mouse embryonic node have both 9+0 and 9+2 configurations (Caspary et al., 2007; Nonaka et al., 1998), and cilia in the frog appear to have an immotile 9+2 design (Reese, 1965). Although the number of motile cilia can range from 200 to 300 per cell type, a single immotile primary cilium is typically present on most cell types.
Pioneering studies in the green alga Chlamydomonas reinhardtii delineated a dynamic process of intraflagellar transport (IFT) that is responsible for the transport of cytoplasmic proteins along the ciliary axoneme. As schematized in the poster, the axoneme is a microtubule-based cytoskeleton that is enclosed by the ciliary membrane (Kozminski et al., 1993; Scholey, 2008). Anterograde transport (towards the plus end – the ciliary tip) is achieved by a heterotrimeric kinesin 2 motor (Scholey, 2008), whereas retrograde transport (towards the minus end – the ciliary base) is driven by cytoplasmic dynein 2 (Kardon and Vale, 2009; Scholey, 2008). Together with IFT particle A (retrograde) and B (anterograde) subcomplexes, these motors facilitate the transport of multi-subunit protein complexes along the axoneme. In vertebrates, the IFT A and B subcomplexes consist of at least six and 13 components, respectively (Cole and Snell, 2009; Scholey, 2008).
Through the use of genomic, transcriptomic and proteomic approaches, the molecular components of the cilia proteome have been studied (Andersen et al., 2003; Avidor-Reiss et al., 2004; Blacque et al., 2005; Broadhead et al., 2006; Efimenko et al., 2005; Keller et al., 2005; Li et al., 2004; Liu et al., 2007; Ostrowski et al., 2002; Pazour et al., 2005; Stolc et al., 2005) and ∼2500 putative proteins identified (see www.ciliaproteome.org) (Gherman et al., 2006). These studies have led to the identification of candidate proteins that have been implicated, directly or indirectly, in transport mechanisms and structural components of the cilium, and in cilia-associated human disorders.
Recent interest in ciliary biology stems from studies in vertebrates that link this organelle to developmental processes, ranging in roles from the control of L-R extra-embryonic nodal fluid flow, which initiates L-R patterning, to the detection of fluid flow in the kidney, light perception by photoreceptors in the retina, and the mediation of morphogenetic signaling pathways (Badano et al., 2006). Within the last decade, defective cilia have been linked causally to at least 13 clinically discrete pathologies (Bardet-Biedl syndrome, Mekel-Gruber syndrome, Joubert syndrome, Senior-Loken syndrome, Alstrom syndrome, polycystic kidney disease, nephronophthisis, cholangiopathies, retinitis pigmentosa, primary ciliary dyskinesia, Hirschsprung disease, oral-facial-digital syndrome and cancer) (Badano et al., 2006; Brugmann et al., 2010; Han and Alvarez-Buylla, 2010; Masyuk et al., 2009) and are predicted to underscore >120 disorders of unknown etiology (Baker and Beales, 2009).
Cilia-related disease
Most vertebrate cell types can develop a cilium during their life cycle, a fact highlighted by the finding that both human and mouse embryonic stem (ES) cells grow a primary cilium in culture (Corbit et al., 2008; Kiprilov et al., 2008). Although it is unclear why some cells do not ciliate in a differentiated state, this absence of cilia appears to be the exception to the rule. Mutations in certain ciliary genes, such as KIF3A and KIF3B (which encode kinesin family members 3A and 3B, two proteins that participate in IFT) affect early developmental processes, such as L-R patterning (Hirokawa et al., 2006). However, mutations in some genes, such as those encoding retinitis pigmentosa GTPase regulator (RPGR) and RPGR-interacting protein 1 (RPGRIP1), which cause retinitis pigmentosa (Ferreira, 2005), do not result in deleterious effects until later in development or postnatally. The variance in phenotypic severity can be attributed to the role of the affected protein; for example, whether core IFT transport components are mutated or whether mutations lie in protein cargo destined to the cilium. In this poster article, we present a snapshot illustrating the temporal and spatial variables that affect ciliary function and disease progression in the mouse retina, kidney and embryonic node. We highlight these specific tissue types to emphasize: (1) structural deficits: the loss of ciliary/centrosomal proteins leads to the degeneration of the ciliary axoneme and in turn photoreceptor death; (2) temporal regulation: the loss of a ciliary protein at postnatal day (P) 12 can result in cystic tubules within 3 weeks, whereas loss of the same protein at P14 can take up to 4 months to cause kidney failure; and (3) mechanosensory and chemosensory defects: the loss of ciliary proteins can alter responsiveness to morphogenetic gradients and flow and can lead to situs inversus.
Cilia and developmental signaling
As a signaling conduit, the primary cilium participates in several signal transduction pathways, including the Hedgehog (Hh), Wnt (canonical and non-canonical), platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) signaling pathways (Berbari et al., 2009; Gerdes et al., 2009; Gorbatyuk et al., 2007). We have highlighted the role of the major components of these pathways on the accompanying poster and provide a summary below, with the full expectation that additional signaling pathways will be linked, either directly or indirectly, to the cilium as we come to understand further the functions and protein content of this organelle.
Hedgehog signaling
The Hh pathway regulates a broad range of key developmental activities. In mammals, the pathway is activated by the binding of the Hh ligands sonic hedgehog (Shh), Indian hedgehog (Ihh) and desert hedgehog (Dhh) to the transmembrane receptor patched (Ptch) and results in internalization of the receptor/ligand complex. Smoothened (Smo), which is normally repressed by Ptch, then facilitates the processing and potential nuclear-cytoplasmic distribution of Gli transcription factors through suppressor of fused (Sufu) (Chen et al., 2009; Humke et al., 2010; Lum and Beachy, 2004).
Recent data suggest that Hh signaling is regulated through the primary cilium. This connection was first established when a genetic screen to characterize mice with neural tube closure defects, a process that is mediated by Shh, identified mutants for components of anterograde and retrograde IFT: Ift88, Ift172 and dynein cytoplasmic 2 heavy chain 1 (Dync2h1) (Huangfu et al., 2003). Disruption in Kif3a also led to similar patterning defects, supporting the notion that IFT proteins are necessary for Hh signaling. Dissection of the IFT-Hh signaling relationship further revealed that IFT proteins control the function of Gli transcription factors by regulating Gli repressor (GliR) and activator (GliA) forms. This observation is best illustrated in some IFT mutants that show either a loss (loss of GliA resulting in defective neural patterning) or gain (loss of GliR resulting in defective limb development) of Hh signaling phenotypes (Liu et al., 2005; May et al., 2005).
Interestingly, Hh effectors localize to the cilium where they transduce the Hh signal. Ciliary targeting of Smo, for example, is augmented in response to Shh ligand in Madin-Darby canine kidney (MDCK) and mouse embryonic fibroblast (NIH-3T3) cell lines (Corbit et al., 2005). Importantly, a ciliary localization motif in Smo appears to control Smo translocation to the cilium (Corbit et al., 2005). Subsequent findings have demonstrated that Gli proteins and Sufu (a negative regulator of Gli) also localize to the primary cilium where, like other IFT proteins, they regulate physiological processes such as limb development and cell migration to the brain and craniofacial skeleton (Corbit et al., 2005; Han et al., 2008; Rohatgi et al., 2007; Spassky et al., 2008; Tobin et al., 2008; Willaredt et al., 2008).
Wnt signaling
Similar to the Hh pathway, several Wnt and planar cell polarity (PCP) components (e.g. adenomatous polyposis coli, Apc; van gogh-like 2, Vangl2; and β-catenin) have been localized to the cilium (Corbit et al., 2008; Ross et al., 2005). Loss of ciliary and basal body proteins results in dysregulation of β-catenin signaling (Corbit et al., 2008; Gerdes et al., 2007; Lancaster et al., 2011a; Lancaster et al., 2011b), with concomitant defects in non-canonical signaling (impaired convergent extension movements, neural tube closure failure and disorganization of stereocilia in the mouse inner ear), highlighting an emerging role for the basal body and primary cilium in Wnt/PCP signaling (Ferrante et al., 2009; Gerdes et al., 2007; Hunkapiller et al., 2010; Lancaster et al., 2009; McDermott et al., 2010; Simons et al., 2005).
The physiological relevance of dysregulated Wnt/PCP signaling is evident in the development and function of several vertebrate organs, such as kidney, cochlea and neural tube. By patterning the planar surface of an epithelium or tissue, PCP proteins, such as disheveled 1 (Dvl1), Dvl2 and Dvl3, can regulate the apical movement of basal bodies from deep within the cytoplasm to the cell surface and, thus, cilia formation and positioning in the Xenopus mucociliary epithelia (Park et al., 2008). In the mouse node, the rotational axis of the primary cilium is tilted towards the posterior side (where velocity of fluid flow is highest), presumably because the basal body is preferentially located at the posterior side of node cells (Nonaka et al., 2005; Okada et al., 2005). Recent evidence suggests that the posterior displacement of centrioles and of cilia in nodal cells is regulated by the asymmetric localization of PCP components and the interaction of PCP signals and fluid flow (Borovina et al., 2010; Guirao et al., 2010; Hashimoto et al., 2010).
Although evidence for the relationship between Wnt signaling and the basal body and cilium has been robust, two recent reports have described normal Wnt signaling in mice with single-gene mutations in the cilia-associated genes Ift88, Ift172, Kif3a and Dync2h1 (Ocbina et al., 2009), and in zebrafish without cilia (for example, the maternal-zygotic ift88 mutant) (Huang and Schier, 2009; Ocbina et al., 2009). These data suggest that the previously published Wnt defects are cilia-independent and represent a secondary, unrelated function of some basal body/axonemal proteins. Alternatively, or additionally, the specific genetic lesion (Lancaster et al., 2011b) and background of the animals used in these studies might explain why the same assays yielded different data in different animal colonies. Variable penetrance and expressivity is a common feature of disease phenotypes across phyla (most notably in humans) (Nadeau, 2001; Weatherall, 2001); as such, alleles that exacerbate, or, more excitingly, protect against defective signaling downstream of ciliary dysfunction might be of significant medical utility.
Other signaling pathways
Additional receptor-ligand components have been localized to the cilium. Although their precise roles in this organelle remain to be elucidated, the examples discussed below reflect our growing appreciation of the complexity of ciliary signaling.
Somatostatin receptor 3 (Sstr3), melanin-concentrating hormone receptor 1 (Mchr1) and serotonin subtype 6 receptor (5-HT6) are G-protein coupled receptors (GPCRs) that localize to the cilium in neurons (Berbari et al., 2008; Brailov et al., 2000; Handel et al., 1999). Interestingly, Bardet-Biedl syndrome (BBS) proteins are required for ciliary function in diverse cell types, and loss of Bbs4 and Bbs2 results in mislocalization of the Sstr3 and Mchr1 receptors and attenuation of GPCR signaling. Given the role of Mchr1 in the regulation of feeding behavior, the depletion GPCRs from the ciliary axoneme has been linked to the hyperphagia feeding phenotypes observed in Bbs mutant mice (Berbari et al., 2008).
Platelet-derived growth factor receptor alpha (Pdgfrα) signaling through the cilium leads to the activation of two pathways: the Akt and the MEK1/2-ERK1/2 (mitogen-activated protein kinase kinase-extracellular signal regulated kinase) pathways (Schneider et al., 2005). Similar to Hh signaling, the localization of Pdgfr to cilia is necessary for PDGF-A activation in cultured embryonic fibroblasts derived from orpk mice (Oak ridge polycystic kidney – a mouse mutant with a hypomorphic Ift88 allele) (Schneider et al., 2005; Yoder et al., 1997). Although these data suggest that Pdgfrα has a mitogenic signaling role during development, the relevance of this pathway in vivo is currently unclear.
The established role of FGF signaling in L-R patterning, through the release of nodal vesicular parcels (NVPs) of Shh and retinoic acid (Tanaka et al., 2005), has also spearheaded new studies into understanding the relationship between morphogenetic fields and ciliary biology. Importantly, transient inhibition of FGF signaling revealed defects in the release of NVPs and calcium signaling but not nodal flow, suggesting that FGF and NVP signaling had no effect on ciliogenesis (Tanaka et al., 2005). However, FGF signaling has recently been implicated in IFT transport and ciliary length (Hong and Dawid, 2009; Neugebauer et al., 2009; Yamauchi et al., 2009). Knockdown studies of both Fgfr1 and FGF ligands cause laterality defects and shortened cilia in the L-R organizer of both zebrafish (Kupffer’s vesicle) and Xenopus embryos (gastrocoel roof plate) (Hong and Dawid, 2009; Neugebauer et al., 2009; Yamauchi et al., 2009), suggesting that FGF defects might arise from impaired ciliary function.
Mechanosensation and osmosensation
The discovery that the cation channel proteins polycystin-1 (PC1; Pkd1 – Mouse Genome Informatics) and polycystin-2 (PC2; Pkd2 – Mouse Genome Informatics) localize to primary cilia in MDCK cells provided the first evidence that cilia function in mammalian mechanosensation (Praetorius and Spring, 2001; Praetorius and Spring, 2003). In the mouse embryonic node, ciliary localization of PC1 and PC2 is crucial for a fluid-induced Ca2+ and cyclic adenosine monophosphate (cAMP) response, influencing cellular responses during development. Given the essential roles of PC1 and PC2, mutant mouse models reveal disease phenotypes that are typically associated with ciliary dysfunction, such as laterality defects and polycystic kidney disease (McGrath and Brueckner, 2003; Nauli et al., 2003). As PC2 also localizes to motile cilia, it is likely that PC2 regulates both the motility of cilia and Ca2+ levels at the node (McGrath et al., 2003; Sleigh and Barlow, 1982). The expression of the purinergic receptors P2X and P2Y, which belong to a family of cation channels that bind to extracellular nucleotides, along the ciliary axoneme also mediates changes in intracellular cAMP levels (Masyuk et al., 2008). Interestingly, components of the A-kinase anchoring protein (Akap) signaling complex have been discovered on cilia present on cholangiocytes (bile duct epithelial cells), further supporting the role of the cilium in detecting changes in bile flow, and demonstrating how changes in fluid flow can influence organogenesis (Masyuk et al., 2008).
Osmosensation in cilia is partly facilitated by the expression of transient receptor potential vanilloid 4 channel (Trpv4), a homolog of Caenorhabditis elegans osmotic avoidance abnormal family member 9 (OSM-9). Activation of Trpv4 results in an increase in intracellular Ca2+ concentrations and might influence ciliary beat frequency and ductal bile formation (Gradilone et al., 2007; Lorenzo et al., 2008).
Perspectives
Our understanding of the role of the cilium in developmental genetics and in human disease has advanced significantly in recent years. Over the next ten years, we are likely to witness more disease states associated with dysfunctional cilia (Baker and Beales, 2009; Gilissen et al., 2010; Walczak-Sztulpa et al., 2010), providing additional avenues by which to link developmental processes to disease pathology. Given the diversity of cilia and the unique composition of protein complexes at the transition zone in different tissue types (Garcia-Gonzalo et al., 2011), the spatiotemporal and genetic context-dependent functions of cilia will need to be examined. This is particularly pertinent in light of recent findings, which show Smo-dependent and -independent (potentially cilia-dependent and -independent) regulation of tumorigenesis (Han et al., 2009; Wong et al., 2009) and the discrepancy of Wnt phenotypes in some IFT mutant models (Huang and Schier, 2009; Ocbina et al., 2009). Finally, given the localization of IFT proteins in other non-ciliary compartments, such as the Golgi complex (Follit et al., 2006), and in non-ciliated cell types, such as lymphocytes (Finetti et al., 2009), we must be careful not to link all IFT mutant phenotypes to ciliary dysfunction, as it is likely that a subset of ciliary proteins will have distinct subcellular roles in cycling and non-cycling cells (Delaval et al., 2011).
Acknowledgments
We apologize to our colleagues whose insightful work was not included owing to size constraints. We are grateful to Erica Davis for her thoughtful critiques of our manuscript.
Footnotes
Funding
This work was supported by the National Institute of Child Health and Development and by the National Institute of Diabetes, Digestive and Kidney Disorders. E.O. was a Fight for Sight Fellow. N.K. is a Distinguished George W. Brumley Professor. Deposited in PMC for release after 12 months.
Competing interests statement
The authors declare no competing financial interests.
Development at a Glance
A high-resolution version of the poster is available for downloading in the online version of this article at http://dev.biologists.org/content/139/3/443.full.
References
- Andersen J. S., Wilkinson C. J., Mayor T., Mortensen P., Nigg E. A., Mann M. (2003). Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426, 570–574 [DOI] [PubMed] [Google Scholar]
- Avidor-Reiss T., Maer A. M., Koundakjian E., Polyanovsky A., Keil T., Subramaniam S., Zuker C. S. (2004). Decoding cilia function: defining specialized genes required for compartmentalized cilia biogenesis. Cell 117, 527–539 [DOI] [PubMed] [Google Scholar]
- Badano J. L., Mitsuma N., Beales P. L., Katsanis N. (2006). The ciliopathies: an emerging class of human genetic disorders. Annu. Rev. Genomics Hum. Genet. 7, 125–148 [DOI] [PubMed] [Google Scholar]
- Baker K., Beales P. L. (2009). Making sense of cilia in disease: the human ciliopathies. Am. J. Med. Genet. C Semin. Med. Genet. 151C, 281–295 [DOI] [PubMed] [Google Scholar]
- Berbari N. F., Lewis J. S., Bishop G. A., Askwith C. C., Mykytyn K. (2008). Bardet-Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia. Proc. Natl. Acad. Sci. USA 105, 4242–4246 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berbari N. F., O’Connor A. K., Haycraft C. J., Yoder B. K. (2009). The primary cilium as a complex signaling center. Curr. Biol. 19, R526–R535 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blacque O. E., Perens E. A., Boroevich K. A., Inglis P. N., Li C., Warner A., Khattra J., Holt R. A., Ou G., Mah A. K., et al. (2005). Functional genomics of the cilium, a sensory organelle. Curr. Biol. 15, 935–941 [DOI] [PubMed] [Google Scholar]
- Borovina A., Superina S., Voskas D., Ciruna B. (2010). Vangl2 directs the posterior tilting and asymmetric localization of motile primary cilia. Nat. Cell Biol. 12, 407–412 [DOI] [PubMed] [Google Scholar]
- Brailov I., Bancila M., Brisorgueil M. J., Miquel M. C., Hamon M., Verge D. (2000). Localization of 5-HT(6) receptors at the plasma membrane of neuronal cilia in the rat brain. Brain Res. 872, 271–275 [DOI] [PubMed] [Google Scholar]
- Broadhead R., Dawe H. R., Farr H., Griffiths S., Hart S. R., Portman N., Shaw M. K., Ginger M. L., Gaskell S. J., McKean P. G., et al. (2006). Flagellar motility is required for the viability of the bloodstream trypanosome. Nature 440, 224–227 [DOI] [PubMed] [Google Scholar]
- Brugmann S. A., Cordero D. R., Helms J. A. (2010). Craniofacial ciliopathies: A new classification for craniofacial disorders. Am. J. Med. Genet. A 152A, 2995–3006 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caspary T., Larkins C. E., Anderson K. V. (2007). The graded response to Sonic Hedgehog depends on cilia architecture. Dev. Cell 12, 767–778 [DOI] [PubMed] [Google Scholar]
- Chang B., Khanna H., Hawes N., Jimeno D., He S., Lillo C., Parapuram S. K., Cheng H., Scott A., Hurd R. E., et al. (2006). In-frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse. Hum. Mol. Genet. 15, 1847–1857 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen M. H., Wilson C. W., Li Y. J., Law K. K., Lu C. S., Gacayan R., Zhang X., Hui C. C., Chuang P. T. (2009). Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved. Genes Dev. 23, 1910–1928 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cole D. G., Snell W. J. (2009). SnapShot: Intraflagellar transport. Cell 137, 784–784 e781 [DOI] [PubMed] [Google Scholar]
- Corbit K. C., Aanstad P., Singla V., Norman A. R., Stainier D. Y., Reiter J. F. (2005). Vertebrate Smoothened functions at the primary cilium. Nature 437, 1018–1021 [DOI] [PubMed] [Google Scholar]
- Corbit K. C., Shyer A. E., Dowdle W. E., Gaulden J., Singla V., Chen M. H., Chuang P. T., Reiter J. F. (2008). Kif3a constrains beta-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat. Cell Biol. 10, 70–76 [DOI] [PubMed] [Google Scholar]
- Davis R. E., Swiderski R. E., Rahmouni K., Nishimura D. Y., Mullins R. F., Agassandian K., Philp A. R., Searby C. C., Andrews M. P., Thompson S., et al. (2007). A knockin mouse model of the Bardet-Biedl syndrome 1 M390R mutation has cilia defects, ventriculomegaly, retinopathy, and obesity. Proc. Natl. Acad. Sci. USA 104, 19422–19427 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delaval B., Bright A., Lawson N. D., Doxsey S. (2011). The cilia protein IFT88 is required for spindle orientation in mitosis. Nat. Cell Biol. 13, 461–468 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Efimenko E., Bubb K., Mak H. Y., Holzman T., Leroux M. R., Ruvkun G., Thomas J. H., Swoboda P. (2005). Analysis of xbx genes in C. elegans. Development 132, 1923–1934 [DOI] [PubMed] [Google Scholar]
- Fath M. A., Mullins R. F., Searby C., Nishimura D. Y., Wei J., Rahmouni K., Davis R. E., Tayeh M. K., Andrews M., Yang B., et al. (2005). Mkks-null mice have a phenotype resembling Bardet-Biedl syndrome. Hum. Mol. Genet. 14, 1109–1118 [DOI] [PubMed] [Google Scholar]
- Ferrante M. I., Zullo A., Barra A., Bimonte S., Messaddeq N., Studer M., Dollé P., Franco B. (2006). Oral-facial-digital type I protein is required for primary cilia formation and left-right axis specification. Nat. Genet. 38, 112–117 [DOI] [PubMed] [Google Scholar]
- Ferrante M. I., Romio L., Castro S., Collins J. E., Goulding D. A., Stemple D. L., Woolf A. S., Wilson S. W. (2009). Convergent extension movements and ciliary function are mediated by ofd1, a zebrafish orthologue of the human oral-facial-digital type 1 syndrome gene. Hum. Mol. Genet. 18, 289–303 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferreira P. A. (2005). Insights into X-linked retinitis pigmentosa type 3, allied diseases and underlying pathomechanisms. Hum. Mol. Genet. 14 Spec. No. 2, R259–R267 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Finetti F., Paccani S. R., Riparbelli M. G., Giacomello E., Perinetti G., Pazour G. J., Rosenbaum J. L., Baldari C. T. (2009). Intraflagellar transport is required for polarized recycling of the TCR/CD3 complex to the immune synapse. Nat. Cell Biol. 11, 1332–1339 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fliegauf M., Benzing T., Omran H. (2007). When cilia go bad: cilia defects and ciliopathies. Nat. Rev. Mol. Cell. Biol. 8, 880–893 [DOI] [PubMed] [Google Scholar]
- Follit J. A., Tuft R. A., Fogarty K. E., Pazour G. J. (2006). The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly. Mol. Biol. Cell 17, 3781–3792 [DOI] [PMC free article] [PubMed] [Google Scholar]
- García-García M. J., Eggenschwiler J. T., Caspary T., Alcorn H. L., Wyler M. R., Huangfu D., Rakeman A. S., Lee J. D., Feinberg E. H., Timmer J. R., et al. (2005). Analysis of mouse embryonic patterning and morphogenesis by forward genetics. Proc. Natl. Acad. Sci. USA 102, 5913–5919 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garcia-Gonzalo F. R., Corbit K. C., Sirerol-Piquer M. S., Ramaswami G., Otto E. A., Noriega T. R., Seol A. D., Robinson J. F., Bennett C. L., Josifova D. J., et al. (2011). A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat. Genet. 43, 776–784 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerdes J. M., Liu Y., Zaghloul N. A., Leitch C. C., Lawson S. S., Kato M., Beachy P. A., Beales P. L., DeMartino G. N., Fisher S., et al. (2007). Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response. Nat. Genet. 39, 1350–1360 [DOI] [PubMed] [Google Scholar]
- Gerdes J. M., Davis E. E., Katsanis N. (2009). The vertebrate primary cilium in development, homeostasis, and disease. Cell 137, 32–45 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gherman A., Davis E. E., Katsanis N. (2006). The ciliary proteome database: an integrated community resource for the genetic and functional dissection of cilia. Nat. Genet. 38, 961–962 [DOI] [PubMed] [Google Scholar]
- Gilissen C., Arts H. H., Hoischen A., Spruijt L., Mans D. A., Arts P., van Lier B., Steehouwer M., van Reeuwijk J., Kant S. G., et al. (2010). Exome sequencing identifies WDR35 variants involved in Sensenbrenner syndrome. Am. J. Hum. Genet. 87, 418–423 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorbatyuk M., Justilien V., Liu J., Hauswirth W. W., Lewin A. S. (2007). Preservation of photoreceptor morphology and function in P23H rats using an allele independent ribozyme. Exp. Eye Res. 84, 44–52 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gradilone S. A., Masyuk A. I., Splinter P. L., Banales J. M., Huang B. Q., Tietz P. S., Masyuk T. V., Larusso N. F. (2007). Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion. Proc. Natl. Acad. Sci. USA 104, 19138–19143 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guirao B., Meunier A., Mortaud S., Aguilar A., Corsi J. M., Strehl L., Hirota Y., Desoeuvre A., Boutin C., Han Y. G., et al. (2010). Coupling between hydrodynamic forces and planar cell polarity orients mammalian motile cilia. Nat. Cell Biol. 12, 341–350 [DOI] [PubMed] [Google Scholar]
- Han Y. G., Alvarez-Buylla A. (2010). Role of primary cilia in brain development and cancer. Curr. Opin. Neurobiol. 20, 58–67 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Han Y. G., Spassky N., Romaguera-Ros M., Garcia-Verdugo J. M., Aguilar A., Schneider-Maunoury S., Alvarez-Buylla A. (2008). Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nat. Neurosci. 11, 277–284 [DOI] [PubMed] [Google Scholar]
- Han Y. G., Kim H. J., Dlugosz A. A., Ellison D. W., Gilbertson R. J., Alvarez-Buylla A. (2009). Dual and opposing roles of primary cilia in medulloblastoma development. Nat. Med. 15, 1062–1065 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Handel M., Schulz S., Stanarius A., Schreff M., Erdtmann-Vourliotis M., Schmidt H., Wolf G., Hollt V. (1999). Selective targeting of somatostatin receptor 3 to neuronal cilia. Neuroscience 89, 909–926 [DOI] [PubMed] [Google Scholar]
- Hashimoto M., Shinohara K., Wang J., Ikeuchi S., Yoshiba S., Meno C., Nonaka S., Takada S., Hatta K., Wynshaw-Boris A., et al. (2010). Planar polarization of node cells determines the rotational axis of node cilia. Nat. Cell Biol. 12, 170–176 [DOI] [PubMed] [Google Scholar]
- Hildebrandt F., Benzing T., Katsanis N. (2011). Ciliopathies. N. Engl. J. Med. 364, 1533–1543 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirokawa N., Tanaka Y., Okada Y., Takeda S. (2006). Nodal flow and the generation of left-right asymmetry. Cell 125, 33–45 [DOI] [PubMed] [Google Scholar]
- Hong S. K., Dawid I. B. (2009). FGF-dependent left-right asymmetry patterning in zebrafish is mediated by Ier2 and Fibp1. Proc. Natl. Acad. Sci. USA 106, 2230–2235 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang P., Schier A. F. (2009). Dampened Hedgehog signaling but normal Wnt signaling in zebrafish without cilia. Development 136, 3089–3098 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huangfu D., Liu A., Rakeman A. S., Murcia N. S., Niswander L., Anderson K. V. (2003). Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426, 83–87 [DOI] [PubMed] [Google Scholar]
- Humke E. W., Dorn K. V., Milenkovic L., Scott M. P., Rohatgi R. (2010). The output of Hedgehog signaling is controlled by the dynamic association between Suppressor of Fused and the Gli proteins. Genes Dev. 24, 670–682 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunkapiller J., Singla V., Seol A., Reiter J. (2010). The ciliogenic protein Ofd1 regulates the neuronal differentiation of embryonic stem cells. Stem Cells Dev. 20, 831–841 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ibanez-Tallon I., Gorokhova S., Heintz N. (2002). Loss of function of axonemal dynein Mdnah5 causes primary ciliary dyskinesia and hydrocephalus. Hum. Mol. Genet. 11, 715–721 [DOI] [PubMed] [Google Scholar]
- Jacoby M., Cox J. J., Gayral S., Hampshire D. J., Ayub M., Blockmans M., Pernot E., Kisseleva M. V., Compère P., Schiffmann S. N., et al. (2009). INPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse. Nat. Genet. 41, 1027–1031 [DOI] [PubMed] [Google Scholar]
- Jiang S. T., Chiou Y. Y., Wang E., Chien Y. L., Ho H. H., Tsai F. J., Lin C. Y., Tsai S. P., Li H. (2009). Essential role of nephrocystin in photoreceptor intraflagellar transport in mouse. Hum. Mol. Genet. 18, 1566–1577 [DOI] [PubMed] [Google Scholar]
- Kardon J. R., Vale R. D. (2009). Regulators of the cytoplasmic dynein motor. Nat. Rev. Mol. Cell. Biol. 10, 854–865 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keller L. C., Romijn E. P., Zamora I., Yates J. R., 3rd., Marshall W. F. (2005). Proteomic analysis of isolated chlamydomonas centrioles reveals orthologs of ciliary-disease genes. Curr. Biol. 15, 1090–1098 [DOI] [PubMed] [Google Scholar]
- Kiprilov E. N., Awan A., Desprat R., Velho M., Clement C. A., Byskov A. G., Andersen C. Y., Satir P., Bouhassira E. E., Christensen S. T., et al. (2008). Human embryonic stem cells in culture possess primary cilia with hedgehog signaling machinery. J. Cell Biol. 180, 897–904 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kozminski K. G., Johnson K. A., Forscher P., Rosenbaum J. L. (1993). A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc. Natl. Acad. Sci. USA 90, 5519–5523 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kramer-Zucker A. G., Olale F., Haycraft C. J., Yoder B. K., Schier A. F., Drummond I. A. (2005). Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development 132, 1907–1921 [DOI] [PubMed] [Google Scholar]
- Kudryashova E., Wu J., Havton L. A., Spencer M. J. (2009). Deficiency of the E3 ubiquitin ligase TRIM32 in mice leads to a myopathy with a neurogenic component. Hum. Mol. Genet. 18, 1353–1367 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kulaga H. M., Leitch C. C., Eichers E. R., Badano J. L., Lesemann A., Hoskins B. E., Lupski J. R., Beales P. L., Reed R. R., Katsanis N. (2004). Loss of BBS proteins causes anosmia in humans and defects in olfactory cilia structure and function in the mouse. Nat. Genet. 36, 994–998 [DOI] [PubMed] [Google Scholar]
- Lancaster M. A., Louie C. M., Silhavy J. L., Sintasath L., Decambre M., Nigam S. K., Willert K., Gleeson J. G. (2009). Impaired Wnt-beta-catenin signaling disrupts adult renal homeostasis and leads to cystic kidney ciliopathy. Nat. Med. 15, 1046–1054 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lancaster M. A., Gopal D. J., Kim J., Saleem S. N., Silhavy J. L., Louie C. M., Thacker B. E., Williams Y., Zaki M. S., Gleeson J. G. (2011a). Defective Wnt-dependent cerebellar midline fusion in a mouse model of Joubert syndrome. Nat. Med. 17, 726–731 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lancaster M. A., Schroth J., Gleeson J. G. (2011b). Subcellular spatial regulation of canonical Wnt signalling at the primary cilium. Nat. Cell Biol. 13, 700–707 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li J. B., Gerdes J. M., Haycraft C. J., Fan Y., Teslovich T. M., May-Simera H., Li H., Blacque O. E., Li L., Leitch C. C., et al. (2004). Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell 117, 541–552 [DOI] [PubMed] [Google Scholar]
- Liu A., Wang B., Niswander L. A. (2005). Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development 132, 3103–3111 [DOI] [PubMed] [Google Scholar]
- Liu Q., Tan G., Levenkova N., Li T., Pugh E. N., Jr, Rux J. J., Speicher D. W., Pierce E. A. (2007). The proteome of the mouse photoreceptor sensory cilium complex. Mol. Cell. Proteomics 6, 1299–1317 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lorenzo I. M., Liedtke W., Sanderson M. J., Valverde M. A. (2008). TRPV4 channel participates in receptor-operated calcium entry and ciliary beat frequency regulation in mouse airway epithelial cells. Proc. Natl. Acad. Sci. USA 105, 12611–12616 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Louie C. M., Caridi G., Lopes V. S., Brancati F., Kispert A., Lancaster M. A., Schlossman A. M., Otto E. A., Leitges M., Gröne H. J., et al. (2010).AHI1 is required for photoreceptor outer segment development and is a modifier for retinal degeneration in nephronophthisis. Nat. Genet. 42, 175–180 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lum L., Beachy P. A. (2004). The Hedgehog response network: sensors, switches, and routers. Science 304, 1755–1759 [DOI] [PubMed] [Google Scholar]
- Masyuk A. I., Gradilone S. A., Banales J. M., Huang B. Q., Masyuk T. V., Lee S. O., Splinter P. L., Stroope A. J., Larusso N. F. (2008). Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides via P2Y12 purinergic receptors. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G725–G734 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masyuk T., Masyuk A., LaRusso N. (2009). Cholangiociliopathies: genetics, molecular mechanisms and potential therapies. Curr. Opin. Gastroenterol. 25, 265–271 [DOI] [PMC free article] [PubMed] [Google Scholar]
- May S. R., Ashique A. M., Karlen M., Wang B., Shen Y., Zarbalis K., Reiter J., Ericson J., Peterson A. S. (2005). Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli. Dev. Biol. 287, 378–389 [DOI] [PubMed] [Google Scholar]
- McDermott K. M., Liu B. Y., Tlsty T. D., Pazour G. J. (2010). Primary cilia regulate branching morphogenesis during mammary gland development. Curr. Biol. 20, 731–737 [DOI] [PMC free article] [PubMed] [Google Scholar]
- McEwen D. P., Koenekoop R. K., Khanna H., Jenkins P. M., Lopez I., Swaroop A., Martens J. R. (2007). Hypomorphic CEP290/NPHP6 mutations result in anosmia caused by the selective loss of G proteins in cilia of olfactory sensory neurons. Proc. Natl. Acad. Sci. USA 104, 15917–15922 [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGrath J., Brueckner M. (2003). Cilia are at the heart of vertebrate left-right asymmetry. Curr. Opin. Genet. Dev. 13, 385–392 [DOI] [PubMed] [Google Scholar]
- McGrath J., Somlo S., Makova S., Tian X., Brueckner M. (2003). Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114, 61–73 [DOI] [PubMed] [Google Scholar]
- Mykytyn K., Mullins R. F., Andrews M., Chiang A. P., Swiderski R. E., Yang B., Braun T., Casavant T., Stone E. M., Sheffield V. C. (2004). Bardet-Biedl syndrome type 4 (BBS4)-null mice implicate Bbs4 in flagella formation but not global cilia assembly. Proc. Natl. Acad. Sci. USA 101, 8664–8669 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nadeau J. H. (2001). Modifier genes in mice and humans. Nat. Rev. Genet. 2, 165–174 [DOI] [PubMed] [Google Scholar]
- Nauli S. M., Alenghat F. J., Luo Y., Williams E., Vassilev P., Li X., Elia A. E., Lu W., Brown E. M., Quinn S. J., et al. (2003). Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33, 129–137 [DOI] [PubMed] [Google Scholar]
- Neugebauer J. M., Amack J. D., Peterson A. G., Bisgrove B. W., Yost H. J. (2009). FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature 458, 651–654 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishimura D. Y., Fath M., Mullins R. F., Searby C., Andrews M., Davis R., Andorf J. L., Mykytyn K., Swiderski R. E., Yang B., et al. (2004). Bbs2-null mice have neurosensory deficits, a defect in social dominance, and retinopathy associated with mislocalization of rhodopsin. Proc. Natl. Acad. Sci. USA 101, 16588–16593 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nonaka S., Tanaka Y., Okada Y., Takeda S., Harada A., Kanai Y., Kido M., Hirokawa N. (1998). Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95, 829–837 [DOI] [PubMed] [Google Scholar]
- Nonaka S., Yoshiba S., Watanabe D., Ikeuchi S., Goto T., Marshall W. F., Hamada H. (2005). De novo formation of left-right asymmetry by posterior tilt of nodal cilia. PLoS Biol. 3, e268 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ocbina P. J., Tuson M., Anderson K. V. (2009). Primary cilia are not required for normal canonical Wnt signaling in the mouse embryo. PLoS ONE 4, e6839 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okada Y., Takeda S., Tanaka Y., Belmonte J. C., Hirokawa N. (2005). Mechanism of nodal flow: a conserved symmetry breaking event in left-right axis determination. Cell 121, 633–644 [DOI] [PubMed] [Google Scholar]
- Olsen B. (2005). Nearly all cells in vertebrates and many cells in invertebrates contain primary cilia. Matrix Biol. 24, 449–450 [DOI] [PubMed] [Google Scholar]
- Ostrowski L. E., Blackburn K., Radde K. M., Moyer M. B., Schlatzer D. M., Moseley A., Boucher R. C. (2002). A proteomic analysis of human cilia: identification of novel components. Mol. Cell. Proteomics 1, 451–465 [DOI] [PubMed] [Google Scholar]
- Ostrowski L. E., Yin W., Rogers T. D., Busalacchi K. B., Chua M., O’Neal W. K., Grubb B. R. (2010). Conditional deletion of dnaic1 in a murine model of primary ciliary dyskinesia causes chronic rhinosinusitis. Am. J. Respir. Cell Mol. Biol. 43, 55–63 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Park T. J., Mitchell B. J., Abitua P. B., Kintner C., Wallingford J. B. (2008). Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells. Nat. Genet. 40, 871–879 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pazour G. J., Agrin N., Leszyk J., Witman G. B. (2005). Proteomic analysis of a eukaryotic cilium. J. Cell Biol. 170, 103–113 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Praetorius H. A., Spring K. R. (2001). Bending the MDCK cell primary cilium increases intracellular calcium. J. Membr. Biol. 184, 71–79 [DOI] [PubMed] [Google Scholar]
- Praetorius H. A., Spring K. R. (2003). Removal of the MDCK cell primary cilium abolishes flow sensing. J. Membr. Biol. 191, 69–76 [DOI] [PubMed] [Google Scholar]
- Pretorius P. R., Baye L. M., Nishimura D. Y., Searby C. C., Bugge K., Yang B., Mullins R. F., Stone E. M., Sheffield V. C., Slusarski D. C. (2010). Identification and functional analysis of the vision-specific BBS3 (ARL6) long isoform. PLoS Genet. 6, e1000884 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reese T. S. (1965). Olfactory cilia in the frog. J. Cell Biol. 25, 209–230 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rohatgi R., Milenkovic L., Scott M. P. (2007). Patched1 regulates hedgehog signaling at the primary cilium. Science 317, 372–376 [DOI] [PubMed] [Google Scholar]
- Ross A. J., May-Simera H., Eichers E. R., Kai M., Hill J., Jagger D. J., Leitch C. C., Chapple J. P., Munro P. M., Fisher S., et al. (2005). Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat. Genet. 37, 1135–1140 [DOI] [PubMed] [Google Scholar]
- Satir P., Christensen S. T. (2007). Overview of structure and function of mammalian cilia. Annu. Rev. Physiol. 69, 377–400 [DOI] [PubMed] [Google Scholar]
- Schneider L., Clement C. A., Teilmann S. C., Pazour G. J., Hoffmann E. K., Satir P., Christensen S. T. (2005). PDGFRalphaalpha signaling is regulated through the primary cilium in fibroblasts. Curr. Biol. 15, 1861–1866 [DOI] [PubMed] [Google Scholar]
- Scholey J. M. (2008). Intraflagellar transport motors in cilia: moving along the cell’s antenna. J. Cell Biol. 180, 23–29 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simons M., Gloy J., Ganner A., Bullerkotte A., Bashkurov M., Kronig C., Schermer B., Benzing T., Cabello O. A., Jenny A., et al. (2005). Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat. Genet. 37, 537–543 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sleigh M. A., Barlow D. I. (1982). How are different ciliary beat patterns produced? Symp. Soc. Exp. Biol. 35, 139–157 [PubMed] [Google Scholar]
- Smith U. M., Consugar M., Tee L. J., McKee B. M., Maina E. N., Whelan S., Morgan N. V., Goranson E., Gissen P., Lilliquist S., et al. (2006). The transmembrane protein meckelin (MKS3) is mutated in Meckel-Gruber syndrome and the wpk rat. Nat. Genet. 38, 191–196 [DOI] [PubMed] [Google Scholar]
- Spassky N., Han Y. G., Aguilar A., Strehl L., Besse L., Laclef C., Ros M. R., Garcia-Verdugo J. M., Alvarez-Buylla A. (2008). Primary cilia are required for cerebellar development and Shh-dependent expansion of progenitor pool. Dev. Biol. 317, 246–259 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stolc V., Samanta M. P., Tongprasit W., Marshall W. F. (2005). Genome-wide transcriptional analysis of flagellar regeneration in Chlamydomonas reinhardtii identifies orthologs of ciliary disease genes. Proc. Natl. Acad. Sci. USA 102, 3703–3707 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Supp D. M., Brueckner M., Kuehn M. R., Witte D. P., Lowe L. A., McGrath J., Corrales J., Potter S. S. (1999). Targeted deletion of the ATP binding domain of left-right dynein confirms its role in specifying development of left-right asymmetries. Development 126, 5495–5504 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tammachote R., Hommerding C. J., Sinders R. M., Miller C. A., Czarnecki P. G., Leightner A. C., Salisbury J. L., Ward C. J., Torres V. E., et al. (2009). Ciliary and centrosomal defects associated with mutation and depletion of the Meckel syndrome genes MKS1 and MKS3. Hum. Mol. Genet. 18, 3311–3323 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tan P. L., Barr T., Inglis P. N., Mitsuma N., Huang S. M., Garcia-Gonzalez M. A., Bradley B. A., Coforio S., Albrecht P. J., Watnick T., et al. (2007). Loss of Bardet Biedl syndrome proteins causes defects in peripheral sensory innervation and function. Proc. Natl. Acad. Sci. USA 104, 17524–17529 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanaka Y., Okada Y., Hirokawa N. (2005). FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination. Nature 435, 172–177 [DOI] [PubMed] [Google Scholar]
- Tobin J. L., Di Franco M., Eichers E., May-Simera H., Garcia M., Yan J., Quinlan R., Justice M. J., Hennekam R. C., Briscoe J., et al. (2008). Inhibition of neural crest migration underlies craniofacial dysmorphology and Hirschsprung’s disease in Bardet-Biedl syndrome. Proc. Natl. Acad. Sci. USA 105, 6714–6719 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vierkotten J., Dildrop R., Peters T., Wang B., Ruther U. (2007). Ftm is a novel basal body protein of cilia involved in Shh signalling. Development 134, 2569–2577 [DOI] [PubMed] [Google Scholar]
- Walczak-Sztulpa J., Eggenschwiler J., Osborn D., Brown D. A., Emma F., Klingenberg C., Hennekam R. C., Torre G., Garshasbi M., Tzschach A., et al. (2010). Cranioectodermal Dysplasia, Sensenbrenner syndrome, is a ciliopathy caused by mutations in the IFT122 gene. Am. J. Hum. Genet. 86, 949–956 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weatherall D. J. (2001). Phenotype-genotype relationships in monogenic disease: lessons from the thalassaemias. Nat. Rev. Genet. 2, 245–255 [DOI] [PubMed] [Google Scholar]
- Weatherbee S. D., Niswander L. A., Anderson K. V. (2009). A mouse model for Meckel syndrome reveals Mks1 is required for ciliogenesis and Hedgehog signaling. Hum. Mol. Genet. 18, 4565–4575 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willaredt M. A., Hasenpusch-Theil K., Gardner H. A., Kitanovic I., Hirschfeld-Warneken V. C., Gojak C. P., Gorgas K., Bradford C. L., Spatz J., Wolfl S., et al. (2008). A crucial role for primary cilia in cortical morphogenesis. J. Neurosci. 28, 12887–12900 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson P. D. (2008). Mouse models of polycystic kidney disease. Curr. Top. Dev. Biol. 84, 311–350 [DOI] [PubMed] [Google Scholar]
- Wong S. Y., Seol A. D., So P. L., Ermilov A. N., Bichakjian C. K., Epstein E. H., Jr, Dlugosz A. A., Reiter J. F. (2009). Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. Nat. Med. 15, 1055–1061 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamauchi H., Miyakawa N., Miyake A., Itoh N. (2009). Fgf4 is required for left-right patterning of visceral organs in zebrafish. Dev. Biol. 332, 177–185 [DOI] [PubMed] [Google Scholar]
- Yoder B. K., Richards W. G., Sommardahl C., Sweeney W. E., Michaud E. J., Wilkinson J. E., Avner E. D., Woychik R. P. (1997). Differential rescue of the renal and hepatic disease in an autosomal recessive polycystic kidney disease mouse mutant. A new model to study the liver lesion. Am. J. Pathol. 150, 2231–2241 [PMC free article] [PubMed] [Google Scholar]

