Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2012 May 8.
Published in final edited form as: Infect Disord Drug Targets. 2009 Feb;9(1):81–91. doi: 10.2174/1871526510909010081

RECENT ADVANCES IN PRION CHEMOTHERAPEUTICS

Valerie L Sim 1,*, Byron Caughey 1
PMCID: PMC3347484  NIHMSID: NIHMS374427  PMID: 19200018

Abstract

The transmissible spongiform encephalopathies are rapidly progressive and invariably fatal neurodegenerative diseases for which there are no proven efficacious treatments. Many approaches have been undertaken to find ways to prevent, halt, or reverse these prion diseases, with limited success to date. However, as both our understanding of pathogenesis and our ability to detect early disease increases, so do our potential therapeutic targets and our chances of finding effective drugs. There is increasing pressure to find effective decontaminants for blood supplies, as variant Creutzfeldt Jakob Disease (vCJD) has been shown to be transmissible by blood, and to find non-toxic preventative therapies, with ongoing cases of Bovine Spongiform Encephalopathy (BSE) and the spread of Chronic Wasting Disease (CWD). Within the realm of chemotherapeutic approaches, much research has focussed on blocking the conversion of the normal form of prion protein (PrPc) to its abnormal counterpart (PrPres). Structurally, these chemotherapeutic agents are often polyanionic or polycyclic and may directly bind PrPc or PrPres, or act by redistributing, sequestering, or down-regulating PrPc, thus preventing its conversion. There are also some polycationic compounds which proport to enhance the clearance of PrPres. Other targets include accessory molecules such as the laminin receptor precursor which influences conversion, or cell signalling molecules which may be required for pathogenesis. Of recent interest are the possible neuroprotective effects of some drugs. Importantly, there is evidence that combining compounds may provide synergistic responses. This review provides an update on current testing methods, therapeutic targets, and promising candidates for chemical-based therapy.

Keywords: prion, PrP, chemotherapeutic, decontamination, prophylaxis, polyanion, conversion

INTRODUCTION

The accumulation of protease-resistant prion protein (PrPres) aggregates is one of the neuropathological hallmarks of transmissible spongiform encephalopathies (TSEs). PrPres is a corrupted form of the normal, protease-sensitive, prion protein (PrPc), and is the primary protein component of the transmissible prion agent [1,2]. As such, it has been a major target for therapeutic intervention. Unfortunately, our incomplete understanding of prion disease pathogenesis has hindered the development of successful treatments. PrPres accumulates as a result of the repeated conformational conversion of α-helical PrPc to highly β-sheet PrPres, likely through an autocatalytic seeded polymerization mechanism. Membrane interaction facilitates this transformation [3], and the site of conversion of wild-type PrPC within prion-infected cells is likely to be the plasma membrane or endocytic vesicles [4,5,6]. However, large extracellular plaques of PrPres can develop in mice whose PrPc lack GPI anchors and are therefore not attached to the membrane [7]. It is also not known how PrPres formation and/or accumulation leads to pathology. Large aggregates of PrPres are neither necessary nor sufficient to cause clinical disease in all cases, and it may be that soluble [8,9], more protease-sensitive [10,11], oligomeric forms of prion protein (PrP) are more relevant to mechanisms of infection, conversion [9] and toxicity [12].

Early treatment regimes, including various prophylactic compounds and immunotherapies, have sought efficacy through neutralization of infectious sources, blockade of infection via the most common peripheral routes, and/or blockade of neuroinvasion. Effective therapies targeting later disease, which are initiated after the appearance of clinical signs, will most likely involve some combination of inhibiting pathogenic PrP formation, destabilizing or enhancing clearance of existing pathogenic PrP, blocking neurotoxic effects of the infection, and/or promoting the recovery of lost functions in the central nervous system (CNS). This article reviews the recent progress in chemotherapeutic approaches to TSE prevention and treatment.

MODELS FOR STUDYING CHEMOTHERAPEUTIC CANDIDATES

In vivo tests provide the most rigorous evaluations of anti-TSE treatments, but are slow, costly, and impractical for screening purposes. A variety of relatively high throughput, low cost, cell culture models [13,14], and some yeast models [15], have enabled the identification of a number of different classes of anti-prion compounds which then have shown efficacy in animal models. Also, in vitro assays have allowed investigation of the mechanisms of prion inhibition. In many cases, anti-prion compounds which bind to PrPc cause it to cluster and internalize, thus rendering PrPc inaccessible or incompatible for conversion to PrPres [16,17,18,19].

Noncellular in vitro assays have also been developed to assess a wide range of potentially effective compounds. These methods generally assess the competitive binding of PrPc and PrPres or the prevention of PrP amyloid fibril formation. Recent techniques include surface plasmon resonance [20], fluorescence correlation spectroscopy [21], semiautomated cell-free conversion [22], and a fluorescence-polarization-based competitive binding assay [23]. Computer “in silico” modelling is also being used to predict binding molecules [24,25].

Ultimately, promising treatments discovered in vitro require testing in animals and humans. Of the many compounds studied in rodent models, few have made their way into human trials or case reports, and the effectiveness of treatment administered at the onset of clinical symptoms, or when there is significant neuropathology, is low. However, many compounds show some prophylactic or early treatment effect in TSE-infected animals, and are therefore relevant to decontamination and early therapy efforts. These drugs need not be permeable to the blood-brain barrier since they can target the peripheral replication of the agent, before neuroinvasion, which is relevant for the many prion diseases that arise following oral or other peripheral exposures. Of course, the option for early treatment has been hindered by a lack of early diagnosis, but with the recent development of new sensitive detection assays [1,26,27,28,29], there is hope for early preclinical TSE diagnostics, and more effective screening and testing of at risk individuals. This, coupled with the rising concern of blood transmission of variant Creutzfeldt Jakob Disease (vCJD), the occurrence of Bovine Spongiform Encephalopathy (BSE) in livestock, and the spread of Chronic Wasting Disease (CWD), lends tremendous relevance to such chemoprophylaxis compounds and potential decontaminants in the management of prion diseases.

TARGETTING PrP CONVERSION

A major focus of drug screening efforts has been the PrP conversion reaction. Many inhibitors prevent conversion by directly binding and blocking interactions between PrPc and PrPSc. Others affect conversion by interfering with important accessory molecules, or by altering PrPc expression and distribution [16]. Many different chemical classes of compounds have been screened and tested in vitro, and additional in vivo data are available for some (Table 1), including early or prophylactic treatments and later stage therapies.

Table 1.

Chemical-based therapeutic and prophylactic agents.

Compound In vitro In vivo (early) In vivo (late) Comments References
POLYANIONS
Heteropolyanion-23 + + - [30,141,179,180]
Dextran sulphate + + - Prolongs incubation after ic inoculation if given within 2 hours (hamsters). [30,38,41,180]
Pentosan polysulphate (PPS) + + + Intraventricular infusion prolongs incubation (tg7 mice).
Used in humans.
Inhibits PrPres formation in cell culture but can stimulate cell-free conversion.
PPS + Fe-TSP has more than additive effects in vivo.
[30,32,35,37,38,39,40,41,181]
Heparan sulphate + + - Inhibits PrPres formation in cell culture but can stimulate cell-free conversion. [30,31,32,35]
Heparan sulphate mimetics, e.g. HM2606, CR36 + + - [43,182,183]
Fucoidan + + Non-toxic. Oral administration. Strain dependent. [44]
Phosphorothioate oligonucleotides + + [45]
RNA aptamers + - - [184,185]
Copaxone + + - [46]
SULPHONATED DYES AND RELATED COMPOUNDS
Congo red + + Only modest prophylactic effects in vivo.
Subinhibitory concentrations stimulate PrPres in cell-free conversion.
Possible teratogen and/or carcinogen.
[30,47,51,52,53,54,55,56,57,58,59,60]
Suramin + + Only modest prophylactic effects in vivo. [41,61]
Curcumin + + + Low dose effective 100 dpi in intracerebrally inoculated mice. [63,65]
CYCLIC TETRAPYRROLES
PcTS, DPG2-Fe3+, TMPP-Fe3+ + + - [66,67,68]
In-TSP + [42]
Fe-TAP, Fe-TSP + + + Fe-TSP & PPS have more than additive effects in vivo. [17]
QUINACRINE, QUINOLINE, ACRIDINES, PHENATHIAZINES
Quinacrine + Quinacrine + desipramine or simvastatin better than quinacrine alone in cells.
Quinacrine + rPrP-Q218K enhances inhibition in cells.
No human benefit seen to date; trial ongoing.
Increases amount of PrPres in the spleen.
Crosses blood-brain barrier.
[71,72,73,75,77,78,79]
Chlorpromazine + + [72,76]
Quinine and biquinoline + + - [80]
Mefloquine + - - [81]
OTHER AMYLOIDOPHILIC COMPOUNDS + + Oral administration. [85]
PYRIDINE DICARBONITRILES + [24,25,86]
PEPTIDE APTAMERS AND B-SHEET BREAKERS
Peptide aptamers + [90]
β-sheet breaker peptides + + Tested by mixing with inoculum only.
May be strain or cell model specific.
[91,92]
CHOLESTEROL DEPLETING AGENTS
Lovastatin, squalestatin + [94,95]
Simvastatin + + + Effect may be unrelated to cholesterol lowering; brain cholesterol levels do not drop. [78,98,99]
Amiodarone, progesterone + [78]
Mevinolin Causes sequestration of PrPc in Golgi apparatus.
No infectivity experiments.
[93]
7-dehydrocholesterol reductase and 24-dehydrocholesterol reductase inhibitors + No effect even if given prior to inoculation. [97]
POLYENE ANTIBIOTICS
Amphotericin B, MS-8209 + + + Human treatments ineffective. [100,101,103,104,105,106,107,108,109,110,111,113]
Mepartricin + + - [103]
Filipin + [111]
COPPER/CHELATORS
D(-)penicillamine + + [129]
Clioquinol + Structurally similar to quinacrine. [130]
Copper # + - Can promote or inhibit PrP conformational conversions. [121,122,123,124,125,126,127,128,133]
Chrysoidine + Mechanism of action may not relate to chelating properties. [132]
DMSO + - Conflicting treatment outcomes. [134,135,136,137]
ANTIVIRALS
Adenine arabinoside + + 2 out of 3 CJD patients had moderate temporary improvement if treated early in course.
Mouse studies failed to show effect.
[138]
INTRACELLULAR MECHANISMS
MEK½ inhibitors (SL327) + [149]
Cysteine-protease inhibitors (E64d) + [71]
Phospholipase inhibitors + [150]
P53 inhibitors (Pifitrin-alpha) + - - [137]
Tyrosine kinase inhibitors (STI571, imatinib mesylate) + + - [151,152]
POLYCATIONS
Polypropyleneimine gen. 4.0, polyetheyleneimine,polyamidoamide gen. 4.0 + [153,154]
Phosphorus dendrimers generation 4 + + [155]
Spermine, spermidine + [156]
DOSPA + [157]
NEUROPROTECTION
Flupirtine maleate + + Tested in human trials; some improvement in cognition.
May be neuroprotective via up-regulation of bcl-2 and normalization of glutathione levels.
[158,159,160]
Cannabidiol + + - No apparent interaction with PrPc or PrPres.
May be protective via inhibition of PrPres-induced microglial cell migration, or antagonism of the NMDA receptor.
[161]
Antioxidant pyrazolone derivatives + Properties other than antioxidant ones may be responsible for effect. [172]

+ Effect demonstrated

- Effect not present

# Induces conversion in vitro

Binding PrPc and/or PrPres

Polyanions

Sulphated glycans and other polyanions are some of the oldest known inhibitors of PrPres formation [30,31]. Their mechanism of action is likely competitive inhibition of physiological cofactors that can bind PrP and promote conversion, including RNA [2,32,33,34], or endogenous sulfated glycosaminoglycans (GAGs) [19,30,31,32,35,36]. The usefulness of these compounds is limited by potential anti-coagulant activity and/or poor blood brain barrier permeability. However, this latter drawback can be circumvented through intraventricular infusion in animal models [37].

Pentosan polysulphate (PPS) is a classic sulphated glycan which prevents new PrPres accumulation [30,31] and is regularly employed to cure cell culture models of prion infection. It prolongs incubation times in rodent-adapted scrapie models [38,39,40,41], and has significant effect when administered via an intraventricular cannula and osmotic pump [37]. Its efficacy has recently been demonstrated in a CWD-infected deer-cell model [42], as well as in a mouse model of BSE [43]. There is also a significant amount of data from case reports of intraventricular PPS used in human prion diseases, with mixed results.

Several other polyanions have been studied. Fucoidan, a complex sulphated fucosylated polysaccharide, is an edible component of seaweed which has in vitro and in vivo anti-prion effects [44]. Phosphorothioate oligonucleotides, particularly those of 17 or more bases, have striking prophylactic effects in mice inoculated subcutaneously or intraperitoneally [45], and have reduced anti-coagulant effect compared with pentosan polysulfate. Copaxone, a polymer of alanine, glutamate, lysine, and tyrosine, is an approved treatment for multiple sclerosis, but can also prolong the incubation periods in rodent-adapted scrapie if it is mixed with the inoculum prior to infection, or if it is given at the time of inoculation [46].

Sulphonated dyes and similar compounds (Congo red, suramin, curcumin)

Congo red was the first identified inhibitor of PrPres accumulation [47]. For a review of its role in neurodegenerative diseases see reference [48]. Its ability to stack and mimic larger polyanions [16,49,50], likely accounts for its ability to inhibit PrPres formation through competition with sulphated glycans for PrPc binding [35]. Inhibition may also result from an overstabilization of PrPres [51]. In vitro, Congo red and analogues thereof decrease PrPres and scrapie infectivity in cells [30,47,51,52,53,54,55,56], block cell-free conversion reactions [53,54,57,58], and decrease surface PrPc in normal cells [19]. In vivo, Congo red prolongs incubation times in hamsters [59,60], but its clinical use is limited by the potential teratogenic and/or carcinogenic activity of the benzidine moiety, and by its poor blood brain barrier permeability.

Polysulphonated naphthyl urea (suramin) is a symmetrical aromatic which is structurally similar to Congo red and can decrease PrPres, decrease surface PrPc, and cause aggregation of recombinant PrP [61]. It has a modest early treatment effect on incubation times in hamsters [41], [61]. Suramin analogues with naphthalene- or benzene-sulphonic acid substitutions also decrease PrPres accumulation and induce PrP aggregation, but have no effect on PrPc expression [62].

Diferuloylmethane (the spice curcumin), has a related structure which lacks sulphonates and the benzidine moiety, is non-toxic, has good blood brain barrier permeability, and can inhibit PrPres formation in vitro [63]. It binds a β-sheet rich form of PrP 90-231, as well as α-helical intermediates, but not the native α-helical form of this N-terminally truncated PrP fragment [64]. Whether curcumin can bind to native full-length PrPC remains to be determined. While high dose treatment was ineffective in vivo [63,65], low doses (50 mg/kg/day) have recently been shown to prolong survival in intracerebrally inoculated mice that were treated starting at 100 days post-inoculation [65].

Cyclic tetrapyrroles (porphyrins, phthalocyanines)

These compounds have highly conjugated planar aromatic ring systems that bind transition metal ions and can be circumscribed by anionic, cationic, or uncharged peripheral substituent groups. Examples include phthalocyanine tetrasulphonate (PcTS), deuteroporphyrin IX 2,4-bis-(ethylene glycol) iron(III) (DPG2-Fe3+), meso-tetra(2-N-methylpyridyl)porphine iron(III) (TMPP-Fe3+), tetra (4-N,N,N-trimethylanilinium)porphine (Fe-TAP), and tetra (4-sulphonatophenyl)porphine (Fe-TSP). They inhibit PrPres accumulation in vitro [66] and significantly increase survival times in vivo when given early in the disease [17,42,67,68], probably by stacking and directly interacting with the flexible amino-terminal domain of PrP molecules [16,69]. Of note, Fe-TSP was more effective in treating mice inoculated intracerebrally when it was used in combination with pentosan polysulphate [17], thus highlighting a possible role for combination therapy. Tetrapyrroles may also be useful in non-rodent models; the compound indium(III) meso-tetra(4-sulphonatophenyl)porphine chloride (In-TSP) has recently been shown to affect CWD-infected deer cell cultures [42].

Another new player on the porphyrin stage is the natural cyclic tetrapyrrole, hemin, which inhibits PrPres formation in cell culture (D. A. Kocisko and B. Caughey, unpublished data). The finding that hemin binds PrPc and causes its clustering and internalization in cell culture [70], raises the possibility that there are physiologically significant hemin-PrPc interactions, and suggests that prion inhibition may result from sequestration of PrPc into a non-convertible state.

Lysosomotropic factors (quinacrine, quinoline, acridines, and phenothiazines)

Quinacrine, chlorpromazine, quinine and related molecules have inhibitory effects on PrPres formation in vitro cells [71,72,73], and variable effects in vivo [37,74,75,76]. Quinacrine has received attention in human clinical trials, but a retrospective analysis of human CJD patients treated with quinacrine, compared to untreated control cases, demonstrated no benefit [77]. Interestingly, the combined use of quinacrine plus desipramine or the HMG-CoA reductase inhibitor simvastatin [78] or the recombinant mutant PrP peptide rPrP-Q218K [79], may be more effective than quinacrine alone (see below). Also, intraventricular cannula treatment of mice with quinine and biquinoline partially reduced pathology in the hemisphere with the cannula, suggesting that this route of administration might enhance efficacy for some of these drugs [80]. One compound, the anti-malarial mefloquine, looked promising in cell culture, but lacked efficacy in tg7 mice that were inoculated intraperitoneally [81].

Tetracyclic compounds

The experiments published to date on tetracycline and doxycycline look promising in that pre-incubation with inocula reduces infectivity [82,83] and detectable PrPres [82,84], and the results of in vivo studies are pending. However, the related molecule minocycline did not demonstrate therapeutic effect [65].

Other amyloidophilic compounds

Recently, anti-prion effects have been studied in a new group of amyloidophilic compounds [85]. Prion-strain dependent effects were seen in cell culture and in intracerebrally inoculated mouse models, where oral drug administration, started early in the disease course, extended incubation times.

Pyridine dicarbonitrile compounds

Certain PrP mutants resist conversion, and a computational search for molecules that spatially resembled these mutants led to the discovery of several compounds with inhibitory effects in cell culture [24]. A pyridine dicarbonitrile substructure was found to be common to these agents [25], and further screening of these types of compounds discovered two which, at 50 nM concentration, could reduce PrPres in cell culture to < 30% of controls [86]. No in vivo data is currently available.

Peptide aptamers and β-sheet breakers

In cell culture models and cell-free conversion systems, peptides of PrP residues 106-141, 119-136, 166-179, and 200-223 can block PrPres formation [87,88,89]. Subsequently, searches have been made for other peptides which might interfere with conversion. One group placed random 16-mer sequences in a constant scaffold of thioredoxin A from E. coli, and selected those which recognized PrP sequence 23-231. Cell culture studies demonstrated that inhibition of PrPres formation occurred in those which targeted PrPc in the endoplasmic reticulum or lysosome [90]. Another group sought peptides which represented a portion of the target protein with prolines inserted to block incorporation into a β-sheet structure. iPrP13, one such β-sheet breaker, had some prophylactic effect in vivo [91]. However, there may be some strain or model dependence, as there was effect in a Chinese Hamster Ovarian cell model expressing mutant PrP, but no effect on infected N2a cells [92].

Redistribution / sequestration of PrPc

Cholesterol-depleting agents

PrPc is primarily located in areas of membrane rich in sphingolipids and cholesterol, called lipid rafts, and conversion of membrane associated PrPc depends on interactions with PrPres in the same membrane [3]. Therefore, agents which affect membrane cholesterol levels could alter PrPc distribution and thereby affect PrPres formation. Mevinolin, an HMG CoA reductase inhibitor which blocks cholesterol synthesis, does reduce cell surface PrPc and leads to the accumulation of PrPc within the Golgi apparatus [93]. Amiodarone and progesterone cause cholesterol redistribution and can clear PrPres from cells [78]. Lovastatin and squalestatin, statin drugs which inhibit cholesterol synthesis, reduce PrPres accumulation in cell culture, an effect which is lost upon addition of cholesterol [94,95]. Inhibitors of cholesterol esterification have also been shown to block PrPres accumulation, consistent with a correlation between cholesterol ester levels and susceptibility of cells and sheep to scrapie infection [96]. However, such in vitro effects of cholesterol modulators do not always translate into in vivo results; inhibitors of 7-dehydrocholesterol reductase and 24-dehydrocholesterol reductase prevented PrPres formation in cell culture, but had no effect on scrapie incubation times, or on brain cholesterol levels in vivo, regardless of whether treatment was initiated prior to or at the time of inoculation [97].

In contrast, the statin drug simvastatin can cross the blood-brain barrier and give some benefit in vivo, despite its short half-life of 1.5 hours. While low doses (1 mg/kg/day) were only effective if begun at the time of intracerebral inoculation [98], high doses (100 mg/kg/day) started 100 days after intracerebral inoculation prolonged survival in mice [99]. Interestingly, in both cases there were no effects on PrPres levels, and cholesterol levels were only reduced in the liver, not the brain. Thus, it may be that the benefits seen were from anti-inflammatory effects more than cholesterol lowering [99]. Regardless of the statin mechanism of action, its usefulness may be enhanced in combination therapy, as using simvastatin with quinacrine can produce a synergistic inhibitory effect [78].

Polyene antibiotics

The antifungal drug amphotericin B reduces PrPres formation in cell culture, but is not curative [100]. It and its less toxic analog MS-8209 offer some early treatment benefits in hamsters [101,102,103,104,105,106,107,108], and some late treatment effects in C57BL/6 mice that have been inoculated intracerebrally [109,110], likely by perturbing the raft membrane domains with which PrPc is associated [100,111]. However, the effect may be somewhat strain-specific [104,105,112], and amphotericin B has been unsuccessful in the treatment of humans with CJD [113]. Another analogue, mepartricin, has efficacy only against intraperitoneal inoculations. Most recently, filipin, a relative of amphotericin B, has been shown to reduce PrPres in cell culture [111], but no in vivo data is available at this time.

Suppressing PrPc expression

Targeting PrPc expression may hold promise for later stage therapy, given that PrPc is required for susceptibility to prion disease [114], that turning off neuronal PrPc expression has no observable consequence in adult mice [115], and that a reversal of neuropathological [116] and behavioral [117] abnormalities has been observed in scrapie-inoculated mice when neuronal expression of PrPc was eliminated, despite the continued presence of PrPres deposits and accumulation of infectivity [116]. Effective methods for reducing PrPc expression in cell culture include the use of small interfering RNA (siRNA) to the PrP gene (Prnp) [118], or specific Prnp nucleotides 392-410 [119]. Recently, a lentivirus vector, designed to express a short hairpin RNA corresponding to Prnp nucleotides 512-532, had significant effect in vitro and in a chimeric mouse infected with scrapie [120].

Other / unknown mechanisms

Copper, chelators

The role of copper in the functioning and conversion of normal PrP, which has several copper binding sites, has been much debated [121,122,123,124,125,126,127,128]. The proteinase K resistance of PrPSc is enhanced in vitro as copper concentrations are increased, suggesting that decreasing copper may be beneficial therapeutically. Copper chelators have had promising effects in cell culture, and examples such as D(-)penicillamine [129] and clioquinol [130] have shown modest effects in vivo. It should be noted, though, that their effectiveness may correlate more with superoxide dismutase ability than chelating properties [131]. Also, clioquinol has structural similarity to quinacrine, raising questions regarding its actual mechanism of action. The chelator chrysoidine inhibits PrPres in cell culture, without reducing PrPc levels or destabilizing PrPres [132], but again, chelation may not be its sole mechanism of action. Further confusing the issue is the recent observation that providing infected mice with copper in their water was sufficient to prolong their incubation periods [133].

Dimethylsulfoxide (DMSO)

This organic solvent inhibits PrPres accumulation in cell culture [134] and lowers the infectivity titre in brain homogenate [135], but has significant toxicity issues in long term use [136]. Also, studies vary in their support for any treatment effect in vivo [136,137].

Antivirals

Early attempts to treat human CJD patients with a wide variety of antiviral agents were unsuccessful, except for some temporary modest improvements reported in two of three CJD patients intermittently treated with vidarabine (adenine arabinoside) [138]. Subsequent studies of rifampicin, cytosine arabinoside, adenosine arabinoside, isoprinosine, amantadine, methisazone, phosphonoacetic acid, virazole, methisoprinol, β-propiolactone, and thiamphenicol have failed to show any effect in mice [101,139,140,141,142].

Targeting accessory molecules and pathways to conversion

Laminin receptor precursor protein (LRP/LR)

The 67 kDa laminin receptor and its 37 kDa precursor bind PrPc [143,144], and possibly PrPres [145], and play roles in PrPres propagation [146]. Several techniques have been used to target LRP/LR, including small interfering RNAs (siRNAs), antisense RNA, LRP antibodies [146], and more recently, recombinant single chain antibodies (scFvs) [147]. These approaches have been well reviewed in reference [148].

Cell signalling pathways

A variety of enzyme and cell signalling inhibitors have been screened and tested for their anti-prion abilities. The mitogen-activated protein kinase ½ (MEK½) inhibitor SL327 [149], the cysteine-protease inhibitor L-trans-epoxysuccinyl-leucylamido (4-guanidino) butane (E64d) [71], and inhibitors of phospholipase A2 (PLA2) and platelet activating factor (PAF) [150], all decrease PrPres in cell culture. The p53 inhibitor pifitrin-α also reduces PrPres in vitro, but has no anti-prion effect in vivo [137]. The tyrosine kinase inhibitor STI571, also known as imatinib mesylate, has efficacy in vitro and in vivo, likely via targeting lysosomal degradation pathways. It cured cells of PrPres after 10 days of treatment [151,152], decreased spleen PrPres, and delayed neuroinvasion if it was administered early after intraperitoneal inoculation. However, even intracerebral delivery of this drug could not clear PrPres from the brain [152].

Enhanced PrPres clearance

Polycations

Anti-prion tendencies in vitro have been reported in a group of cationic polyamines which may exert their effects, in part, via enhanced PrPres clearance [153]. Polypropyleneimine generation 4.0, polyethyleneimine, and polyamidoamide generation 4.0, are components of Qiagen SuperFect transfection reagent which prevent PrPres formation [153] and remove infectivity from cell culture [154], possibly acting at the level of the lysosome [154]. Phosphorus dendrimers, generation 4, are less toxic, more bioavailable, and can reduce the splenic content of PrPres in mice inoculated intraperitoneally [155]. Spermine and spermidine reduce the tRNA-induced polymerization of alpha-PrP, suggesting they might influence prion infection [156]. DOSPA is a lipopolyamine which enhances PrPres clearance in cells and also blocks de novo formation. Its activity is dependent on membrane association [157].

NEUROPROTECTION

Compounds without direct effects on PrPc, PrPres, or conversion, may have therapeutic potential as neuroprotective agents or symptomatic treatment.

Analgesics

Flupirtine maleate is a triaminopyridine analgesic which has been tested in a prospective double-blind treatment trial of 28 human CJD and found to significantly improve cognitive functioning, although the study was not powered to detect any differences in survival [158]. It has anti-apoptotic effects in cell culture models of β-amyloid [159] and prion protein fragment PrP106-126 [160], likely mediated through up-regulation of the proto-oncogene bcl-2 and normalization of glutathione levels [159,160].

Cannabis

Cannabidiol is a nonpsychoactive constituent of cannabis which readily crosses the blood brain barrier, targets the brain, and has minimal toxicity. It can inhibit PrPres accumulation in cells, reduce PrPres toxicity in primary neuronal cultures, and prolong survival in intraperitoneally inoculated mice given early treatment, while having no effect on cell-free conversion, PrPc expression, or PrPres stability [161]. Interestingly, brain PrPres levels were reduced, while spleen levels were not. It was proposed that cannabidiol's anti-prion effect may actually be one of neuroprotection, possibly via inhibition of PrPres-induced microglial cell migration, or its ability to antagonize the NMDA receptor.

Antioxidants

Many studies have found associations among PrPc, prion infection, and oxidative stress [162,163,164,165,166,167,168,169], and some have proposed that PrPc has superoxide dismutase (SOD) activity [170]. After the initial appearance of PrPres deposits in BSE-infected mice expressing bovine PrPc, brain levels of the endogenous lipophilic antioxidants coenzyme Q 9 and 10 steadily increase, suggesting that the anti-oxidant system may be overwhelmed in prion infection [171]. Antioxidant therapy may therefore be of some benefit. Some pyrazolone derivatives, derived from the free radical scavenger edaravone, can inhibit PrPres in cell culture at a concentration as low as 3 nM [172]. However, no in vivo data is available, and given that there was no correlation between inhibitory activity and the compounds’ SOD, copper oxidizing, or copper binding activities, it is unclear whether antioxidant properties were responsible for the effect.

Gingko Biloba

Egb761, an extract of leaves from Gingko biloba, has been explored as a treatment for improving cognition in dementia patients, and can interfere β-amyloid formation, aggregation, and toxicity [173,174,175]. The mechanism of action is unclear, but bilobalide, a component of Egb761, appears to be an antagonist of the GABA(A) receptor, whose α5 subunit, found predominantly in the hippocampus, has been implicated in the processes of learning and memory. Mice whose α5 subunits are blocked with drugs [176] or who are genetically engineered without this subunit [177] have enhanced spatial learning. Because the loss of spatial learning is an early sign in some rodent-adapted scrapie models, it was theorized that an upregulated GABA(A) receptor might play a role in prion pathogenesis, and that its modulation might affect disease outcome. However, intraperitoneal Gingko biloba administered at 1250 mg/kg/day (corresponding to 45 mg/kg/day bilobalide) starting at 21 days post-inoculation had no effect on the survival times of intracerebrally inoculated tg7 mice (Sim, Morrey, and Caughey, unpublished data).

COMBINATION THERAPY

Given the partial efficacies of treatments targeting PrP conversion, PrPres clearance, PrPc expression, and neuroprotection, it makes sense to try combining therapies and look for cooperative or synergistic effects. Precedence for this can be found a few examples. A more than additive improvement of survival was discovered with a combination of pentosan polysulphate and Fe(III)meso-tetra(4-sulfonatophenyl)porphine (Fe-TSP) in tg7 mice inoculated intracerebrally with scrapie [45]. Weekly intracerebral treatments more than doubled survival times when treatment was initiated 2 weeks post-inoculation. In another instance, quinacrine enhanced PrPres inhibition in cell culture when used in combination with the conversion-resistant mutant rPrP-Q218K [79,178]. Quinacrine also produced more than additive inhibition when cells were co-treated with simvastatin or desipramine. This latter observation led to the creation of a more potent cell culture inhibitor of PrPres, called quipramine, by covalently linking the acridine scaffold of quinacrine with the iminodibenzyl scaffold of desipramine [78].

CONCLUSIONS

As new techniques are developed for earlier and more sensitive detection of PrPres [1,26,27,28,29], and as we continue to learn more about prion pathogenesis, many compounds with prophylactic and early treatment potentials may become practical for clinical use, in addition to decontamination purposes. Combining several arms of therapy which block conversion, promote PrPres clearance, and ameliorate prion disease pathogenesis, may greatly enhance our abilities to significantly influence clinical outcomes.

Reference List

  • 1.Castilla J, Saa P, Hetz C, Soto C. Cell. 2005;121:195. doi: 10.1016/j.cell.2005.02.011. [DOI] [PubMed] [Google Scholar]
  • 2.Deleault NR, Harris BT, Rees JR, Supattapone S. Proc Natl Acad Sci U S A. 2007;104:9741. doi: 10.1073/pnas.0702662104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Baron GS, Wehrly K, Dorward DW, Chesebro B, Caughey B. EMBO J. 2002;21:1031. doi: 10.1093/emboj/21.5.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Caughey B, Raymond GJ. J. Biol. Chem. 1991;266:18217. [PubMed] [Google Scholar]
  • 5.Caughey B, Raymond GJ, Ernst D, Race RE. J. Virol. 1991;65:6597. doi: 10.1128/jvi.65.12.6597-6603.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Borchelt DR, Taraboulos A, Prusiner SB. J. Biol. Chem. 1992;267:16188. [PubMed] [Google Scholar]
  • 7.Chesebro B, Trifilo M, Race R, Meade-White K, Teng C, LaCasse R, Raymond L, Favara C, Baron G, Priola S, Caughey B, Masliah E, Oldstone M. Science. 2005;308:1435. doi: 10.1126/science.1110837. [DOI] [PubMed] [Google Scholar]
  • 8.Berardi VA, Cardone F, Valanzano A, Lu M, Pocchiari M. Transfusion. 2006;46:652. doi: 10.1111/j.1537-2995.2006.00763.x. [DOI] [PubMed] [Google Scholar]
  • 9.Silveira JR, Raymond GJ, Hughson AG, Race RE, Sim VL, Hayes SF, Caughey B. Nature. 2005;437:257. doi: 10.1038/nature03989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Pastrana MA, Sajnani G, Onisko B, Castilla J, Morales R, Soto C, Requena JR. Biochemistry. 2006;45:15710. doi: 10.1021/bi0615442. [DOI] [PubMed] [Google Scholar]
  • 11.Tzaban S, Friedlander G, Schonberger O, Horonchik L, Yedidia Y, Shaked G, Gabizon R, Taraboulos A. Biochemistry. 2002;41:12868. doi: 10.1021/bi025958g. [DOI] [PubMed] [Google Scholar]
  • 12.Novitskaya V, Bocharova OV, Bronstein I, Baskakov IV. J Biol Chem. 2006;281:13828. doi: 10.1074/jbc.M511174200. [DOI] [PubMed] [Google Scholar]
  • 13.Kocisko DA, Baron GS, Rubenstein R, Chen J, Kuizon S, Caughey B. J. Virol. 2003;77:10288. doi: 10.1128/JVI.77.19.10288-10294.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Kocisko DA, Caughey B. Methods Enzymol. 2006;412:223. doi: 10.1016/S0076-6879(06)12014-5. [DOI] [PubMed] [Google Scholar]
  • 15.Bach S, Talarek N, Andrieu T, Vierfond JM, Mettey Y, Galons H, Dormont D, Meijer L, Cullin C, Blondel M. Nat. Biotechnol. 2003;21:1075. doi: 10.1038/nbt855. [DOI] [PubMed] [Google Scholar]
  • 16.Caughey B, Caughey WS, Kocisko DA, Lee KS, Silveira JR, Morrey JD. Accts. Chem. Res. 2006;39:646. doi: 10.1021/ar050068p. [DOI] [PubMed] [Google Scholar]
  • 17.Kocisko DA, Caughey WS, Race RE, Roper G, Caughey B, Morrey JD. Antimicrob. Agents Chemother. 2006;50:759. doi: 10.1128/AAC.50.2.759-761.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Kiachopoulos S, Heske J, Tatzelt J, Winklhofer KF. Traffic. 2004;5:426. doi: 10.1111/j.1398-9219.2004.00185.x. [DOI] [PubMed] [Google Scholar]
  • 19.Shyng SL, Lehmann S, Moulder KL, Harris DA. J Biol Chem. 1995;270:30221. doi: 10.1074/jbc.270.50.30221. [DOI] [PubMed] [Google Scholar]
  • 20.Kawatake S, Nishimura Y, Sakaguchi S, Iwaki T, Doh-ura K. Biol. Pharm. Bull. 2006;29:927. doi: 10.1248/bpb.29.927. [DOI] [PubMed] [Google Scholar]
  • 21.Bertsch U, Winklhofer KF, Hirschberger T, Bieschke J, Weber P, Hartl FU, Tavan P, Tatzelt J, Kretzschmar HA, Giese A. J. Virol. 2005;79:7785. doi: 10.1128/JVI.79.12.7785-7791.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Breydo L, Bocharova OV, Baskakov IV. Anal. Biochem. 2005;339:165. doi: 10.1016/j.ab.2005.01.003. [DOI] [PubMed] [Google Scholar]
  • 23.Kocisko DA, Bertholet N, Moore RA, Caughey B, Vaillant A. Anal. Biochem. 2007;363:154. doi: 10.1016/j.ab.2006.11.007. [DOI] [PubMed] [Google Scholar]
  • 24.Perrier V, Wallace AC, Kaneko K, Safar J, Prusiner SB, Cohen FE. Proc. Natl. Acad. Sci. U. S. A. 2000;97:6073. doi: 10.1073/pnas.97.11.6073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Reddy TR, Mutter R, Heal W, Guo K, Gillet VJ, Pratt S, Chen B. J. Med. Chem. 2006;49:607. doi: 10.1021/jm050610f. [DOI] [PubMed] [Google Scholar]
  • 26.Atarashi R, Moore RA, Sim VL, Hughson AG, Dorward DW, Onwubiko HA, Priola SA, Caughey B. Nat Methods. 2007;4:645. doi: 10.1038/nmeth1066. [DOI] [PubMed] [Google Scholar]
  • 27.Deleault NR, Geoghegan JC, Nishina K, Kascsak R, Williamson RA, Supattapone S. J Biol Chem. 2005;280:26873. doi: 10.1074/jbc.M503973200. [DOI] [PubMed] [Google Scholar]
  • 28.Saa P, Castilla J, Soto C. Science. 2006;313:92. doi: 10.1126/science.1129051. [DOI] [PubMed] [Google Scholar]
  • 29.Atarashi R, Wilham JM, Christensen L, Hughson AG, Moore RA, Johnson LM, Onwubiko HA, Priola SA, Caughey B. Nat. Methods. 2008;5:211. doi: 10.1038/nmeth0308-211. [DOI] [PubMed] [Google Scholar]
  • 30.Caughey B, Raymond GJ. J. Virol. 1993;67:643. doi: 10.1128/jvi.67.2.643-650.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Gabizon R, Meiner Z, Halimi M, Bensasson SA. J. Cell. Physiol. 1993;157:319. doi: 10.1002/jcp.1041570215. [DOI] [PubMed] [Google Scholar]
  • 32.Wong C, Xiong L-W, Horiuchi M, Raymond LD, Wehrly K, Chesebro B, Caughey B. EMBO J. 2001;20:377. doi: 10.1093/emboj/20.3.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Deleault NR, Lucassen RW, Supattapone S. Nature. 2003;425:717. doi: 10.1038/nature01979. [DOI] [PubMed] [Google Scholar]
  • 34.Caughey B, Kocisko DA. Nature. 2003;425:673. doi: 10.1038/425673a. [DOI] [PubMed] [Google Scholar]
  • 35.Caughey B, Brown K, Raymond GJ, Katzenstien GE, Thresher W. J. Virol. 1994;68:2135. doi: 10.1128/jvi.68.4.2135-2141.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Ben-Zaken O, Tzaban S, Tal Y, Horonchik L, Esko JD, Vlodavsky I, Taraboulos A. J. Biol. Chem. 2003;278:40041. doi: 10.1074/jbc.M301152200. [DOI] [PubMed] [Google Scholar]
  • 37.Doh-ura K, Ishikawa K, Murakami-Kubo I, Sasaki K, Mohri S, Race R, Iwaki T. J. Virol. 2004;78:4999. doi: 10.1128/JVI.78.10.4999-5006.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Ehlers B, Diringer H. J. Gen. Virol. 1984;65:1325. doi: 10.1099/0022-1317-65-8-1325. [DOI] [PubMed] [Google Scholar]
  • 39.Diringer H, Ehlers B. J. Gen. Virol. 1991;72:457. doi: 10.1099/0022-1317-72-2-457. [DOI] [PubMed] [Google Scholar]
  • 40.Farquhar C, Dickinson A, Bruce M. Lancet. 1999;353:117. doi: 10.1016/S0140-6736(98)05395-1. [DOI] [PubMed] [Google Scholar]
  • 41.Ladogana A, Casaccia P, Ingrosso L, Cibati M, Salvatore M, Xi YG, Masullo C, Pocchiari M. J. Gen. Virol. 1992;73:661. doi: 10.1099/0022-1317-73-3-661. [DOI] [PubMed] [Google Scholar]
  • 42.Raymond GJ, Olsen EA, Lee KS, Raymond LD, Bryant PK, III, Baron GS, Caughey WS, Kocisko DA, McHolland LE, Favara C, Langeveld JP, van Zijderveld FG, Mayer RT, Miller MW, Williams ES, Caughey B. J. Virol. 2006;80:596. doi: 10.1128/JVI.80.2.596-604.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Larramendy-Gozalo C, Barret A, Daudigeos E, Mathieu E, Antonangeli L, Riffet C, Petit E, Papy-Garcia D, Barritault D, Brown P, Deslys JP. J. Gen. Virol. 2007;88:1062. doi: 10.1099/vir.0.82286-0. [DOI] [PubMed] [Google Scholar]
  • 44.Doh-ura K, Kuge T, Uomoto M, Nishizawa K, Kawasaki Y, Iha M. Antimicrob. Agents Chemother. 2007;51:2274. doi: 10.1128/AAC.00917-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Kocisko DA, Vaillant A, Lee KS, Arnold KM, Bertholet N, Race RE, Olsen EA, Juteau JM, Caughey B. Antimicrob. Agents Chemother. 2006;50:1034. doi: 10.1128/AAC.50.3.1034-1044.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Engelstein R, Ovadia H, Gabizon R. Eur. J. Neurol. 2007;14:877. doi: 10.1111/j.1468-1331.2007.01803.x. [DOI] [PubMed] [Google Scholar]
  • 47.Caughey B, Race RE. J. Neurochem. 1992;59:768. doi: 10.1111/j.1471-4159.1992.tb09437.x. [DOI] [PubMed] [Google Scholar]
  • 48.Frid P, Anisimov SV, Popovic N. Brain Res. Rev. 2007;53:135. doi: 10.1016/j.brainresrev.2006.08.001. [DOI] [PubMed] [Google Scholar]
  • 49.Woody AM, Reisbig RR, Woody RW. Biochim. Biophys. Acta. 1981;655:82. doi: 10.1016/0005-2787(81)90069-1. [DOI] [PubMed] [Google Scholar]
  • 50.Priola SA, Caughey B. Mol. Neurobiol. 1994;8:113. doi: 10.1007/BF02780661. [DOI] [PubMed] [Google Scholar]
  • 51.Caspi S, Halimi M, Yanai A, Sasson SB, Taraboulos A, Gabizon R. J. Biol. Chem. 1998;273:3484. doi: 10.1074/jbc.273.6.3484. [DOI] [PubMed] [Google Scholar]
  • 52.Caughey B, Ernst D, Race RE. J. Virol. 1993;67:6270. doi: 10.1128/jvi.67.10.6270-6272.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Demaimay R, Harper J, Gordon H, Weaver D, Chesebro B, Caughey B. J. Neurochem. 1998;71:2534. doi: 10.1046/j.1471-4159.1998.71062534.x. [DOI] [PubMed] [Google Scholar]
  • 54.Demaimay R, Chesebro B, Caughey B. Arch. Virol. [Suppl] 2000;16:277. doi: 10.1007/978-3-7091-6308-5_26. [DOI] [PubMed] [Google Scholar]
  • 55.Rudyk H, Vasiljevic S, Hennion RM, Birkett CR, Hope J, Gilbert IH. J. Gen. Virol. 2000;81:1155. doi: 10.1099/0022-1317-81-4-1155. [DOI] [PubMed] [Google Scholar]
  • 56.Poli G, Ponti W, Carcassola G, Ceciliani F, Colombo L, Dall'Ara P, Gervasoni M, Giannino ML, Martino PA, Pollera C, Villa S, Salmona M. Arzneimittelforschung. 2003;53:875. doi: 10.1055/s-0031-1299845. [DOI] [PubMed] [Google Scholar]
  • 57.Kirby L, Birkett CR, Rudyk H, Gilbert IH, Hope J. J. Gen. Virol. 2003;84:1013. doi: 10.1099/vir.0.18903-0. [DOI] [PubMed] [Google Scholar]
  • 58.Lucassen R, Nishina K, Supattapone S. Biochemistry. 2003;42:4127. doi: 10.1021/bi027218d. [DOI] [PubMed] [Google Scholar]
  • 59.Ingrosso L, Ladogana A, Pocchiari M. J. Virol. 1995;69:506. doi: 10.1128/jvi.69.1.506-508.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Poli G, Martino PA, Villa S, Carcassola G, Giannino ML, Dall'Ara P, Pollera C, Iussich S, Tranquillo VM, Bareggi S, Mantegazza P, Ponti W. Arzneimittelforschung. 2004;54:406. doi: 10.1055/s-0031-1296992. [DOI] [PubMed] [Google Scholar]
  • 61.Gilch S, Winklhofer KF, Groschup MH, Nunziante M, Lucassen R, Spielhaupter C, Muranyi W, Riesner D, Tatzelt J, Schatzl HM. EMBO J. 2001;20:3957. doi: 10.1093/emboj/20.15.3957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Nunziante M, Kehler C, Maas E, Kassack MU, Groschup M, Schatzl HM. J. Cell Sci. 2005;118:4959. doi: 10.1242/jcs.02609. [DOI] [PubMed] [Google Scholar]
  • 63.Caughey B, Raymond LD, Raymond GJ, Maxson L, Silveira J, Baron GS. J. Virol. 2003;77:5499. doi: 10.1128/JVI.77.9.5499-5502.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Hafner-Bratkovic I, Gaspersic J, Smid LM, Bresjanac M, Jerala R. J Neurochem. 2008;104:1553. doi: 10.1111/j.1471-4159.2007.05105.x. [DOI] [PubMed] [Google Scholar]
  • 65.Riemer C, Burwinkel M, Schwarz A, Gultner S, Mok SW, Heise I, Holtkamp N, Baier M. J Gen. Virol. 2008;89:594. doi: 10.1099/vir.0.83281-0. [DOI] [PubMed] [Google Scholar]
  • 66.Caughey WS, Raymond LD, Horiuchi M, Caughey B. Proc. Natl. Acad. Sci. U. S. A. 1998;95:12117. doi: 10.1073/pnas.95.21.12117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Priola SA, Raines A, Caughey WS. Science. 2000;287:1503. doi: 10.1126/science.287.5457.1503. [DOI] [PubMed] [Google Scholar]
  • 68.Priola SA, Raines A, Caughey W. J. Infect. Dis. 2003;188:699. doi: 10.1086/377310. [DOI] [PubMed] [Google Scholar]
  • 69.Caughey WS, Priola SA, Kocisko DA, Raymond LD, Ward A, Caughey B. Antimicrob. Agents Chemother. 2007;51:3887. doi: 10.1128/AAC.01599-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Lee KS, Raymond LD, Schoen B, Raymond GJ, Kett L, Moore RA, Johnson LM, Taubner L, Speare JO, Onwubiko HA, Baron GS, Caughey WS, Caughey B. J Biol. Chem. 2007 doi: 10.1074/jbc.M705620200. [DOI] [PubMed] [Google Scholar]
  • 71.Doh-ura K, Iwaki T, Caughey B. J. Virol. 2000;74:4894. doi: 10.1128/jvi.74.10.4894-4897.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Korth C, May BC, Cohen FE, Prusiner SB. Proc. Natl. Acad. Sci. U. S. A. 2001;98:9836. doi: 10.1073/pnas.161274798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Ryou C, Legname G, Peretz D, Craig JC, Baldwin MA, Prusiner SB. Lab Invest. 2003;83:837. doi: 10.1097/01.lab.0000074919.08232.a2. [DOI] [PubMed] [Google Scholar]
  • 74.Collins SJ, Lewis V, Brazier M, Hill AF, Fletcher A, Masters CL. Ann. Neurol. 2002;52:503. doi: 10.1002/ana.10336. [DOI] [PubMed] [Google Scholar]
  • 75.Barret A, Tagliavini F, Forloni G, Bate C, Salmona M, Colombo L, De Luigi A, Limido L, Suardi S, Rossi G, Auvre F, Adjou KT, Sales N, Williams A, Lasmezas C, Deslys JP. J. Virol. 2003;77:8462. doi: 10.1128/JVI.77.15.8462-8469.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Roikhel VM, Fokina GI, Pogodina VV. Acta Virol. 1984;28:321. [PubMed] [Google Scholar]
  • 77.Haik S, Brandel JP, Salomon D, Sazdovitch V, asnerie-Laupretre N, Laplanche JL, Faucheux BA, Soubrie C, Boher E, Belorgey C, Hauw JJ, Alperovitch A. Neurology. 2004;63:2413. doi: 10.1212/01.wnl.0000148596.15681.4d. [DOI] [PubMed] [Google Scholar]
  • 78.Klingenstein R, Lober S, Kujala P, Godsave S, Leliveld SR, Gmeiner P, Peters PJ, Korth C. J Neurochem. 2006;98:748. doi: 10.1111/j.1471-4159.2006.03889.x. [DOI] [PubMed] [Google Scholar]
  • 79.Kishida H, Sakasegawa Y, Watanabe K, Yamakawa Y, Nishijima M, Kuroiwa Y, Hachiya NS, Kaneko K. Amyloid. 2004;11:14. doi: 10.1080/13506120410001689634. [DOI] [PubMed] [Google Scholar]
  • 80.Murakami-Kubo I, Doh-ura K, Ishikawa K, Kawatake S, Sasaki K, Kira J, Ohta S, Iwaki T. J. Virol. 2004;78:1281. doi: 10.1128/JVI.78.3.1281-1288.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Kocisko DA, Caughey B. J. Virol. 2006;80:1044. doi: 10.1128/JVI.80.2.1044-1046.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Forloni G, Iussich S, Awan T, Colombo L, Angeretti N, Girola L, Bertani I, Poli G, Caramelli M, Grazia BM, Farina L, Limido L, Rossi G, Giaccone G, Ironside JW, Bugiani O, Salmona M, Tagliavini F. Proc. Natl. Acad. Sci. U. S. A. 2002;99:10849. doi: 10.1073/pnas.162195499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Guo YJ, Han J, Yao HL, Zhang BY, Gao JM, Zhang J, Xiao XL, Wang XF, Zhao WQ, Wang DX, Dong XP. Biomed. Environ. Sci. 2007;20:198. [PubMed] [Google Scholar]
  • 84.Tagliavini F, Forloni G, Colombo L, Rossi G, Girola L, Canciani B, Angeretti N, Giampaolo L, Peressini E, Awan T, De GL, Ragg E, Bugiani O, Salmona M. J Mol. Biol. 2000;300:1309. doi: 10.1006/jmbi.2000.3840. [DOI] [PubMed] [Google Scholar]
  • 85.Kawasaki Y, Kawagoe K, Chen CJ, Teruya K, Sakasegawa Y, Doh-ura K. J Virol. 2007;81:12889. doi: 10.1128/JVI.01563-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Guo K, Mutter R, Heal W, Reddy TR, Cope H, Pratt S, Thompson MJ, Chen B. Eur. J Med. Chem. 2008;43:93. doi: 10.1016/j.ejmech.2007.02.018. [DOI] [PubMed] [Google Scholar]
  • 87.Chabry J, Priola SA, Wehrly K, Nishio J, Hope J, Chesebro B. J. Virol. 1999;73:6245. doi: 10.1128/jvi.73.8.6245-6250.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Chabry J, Caughey B, Chesebro B. J. Biol. Chem. 1998;273:13203. doi: 10.1074/jbc.273.21.13203. [DOI] [PubMed] [Google Scholar]
  • 89.Horiuchi M, Baron GS, Xiong LW, Caughey B. J. Biol. Chem. 2001;276:15489. doi: 10.1074/jbc.M100288200. [DOI] [PubMed] [Google Scholar]
  • 90.Gilch S, Kehler C, Schatzl HM. J Mol. Biol. 2007;371:362. doi: 10.1016/j.jmb.2007.05.052. [DOI] [PubMed] [Google Scholar]
  • 91.Soto C, Kascsak RJ, Saborio GP, Aucouturier P, Wisniewski T, Prelli F, Kascsak R, Mendez E, Harris DA, Ironside J, Tagliavini F, Carp RI, Frangione B. Lancet. 2000;355:192. doi: 10.1016/s0140-6736(99)11419-3. [DOI] [PubMed] [Google Scholar]
  • 92.Oishi T, Hagiwara K, Kinumi T, Yamakawa Y, Nishijima M, Nakamura K, Arimoto H. Org. Biomol. Chem. 2003;1:2626. doi: 10.1039/b306682g. [DOI] [PubMed] [Google Scholar]
  • 93.Gilch S, Kehler C, Schatzl HM. Mol. Cell Neurosci. 2006;31:346. doi: 10.1016/j.mcn.2005.10.008. [DOI] [PubMed] [Google Scholar]
  • 94.Taraboulos A, Scott M, Semenov A, Avraham D, Laszlo L, Prusiner SB. J. Cell. Biol. 1995;129:121. doi: 10.1083/jcb.129.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Bate C, Salmona M, Diomede L, Williams A. J. Biol. Chem. 2004 doi: 10.1074/jbc.M313061200. [DOI] [PubMed] [Google Scholar]
  • 96.Pani A, Norfo C, Abete C, Mulas C, Putzolu M, Laconi S, Orru CD, Cannas MD, Vascellari S, La CP, Dessi S. Antimicrob. Agents Chemother. 2007;51:4141. doi: 10.1128/AAC.00524-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Hagiwara K, Nakamura Y, Nishijima M, Yamakawa Y. Biol. Pharm. Bull. 2007;30:835. doi: 10.1248/bpb.30.835. [DOI] [PubMed] [Google Scholar]
  • 98.Kempster S, Bate C, Williams A. Neuroreport. 2007;18:479. doi: 10.1097/WNR.0b013e328058678d. [DOI] [PubMed] [Google Scholar]
  • 99.Mok SW, Thelen KM, Riemer C, Bamme T, Gultner S, Lutjohann D, Baier M. Biochem. Biophys. Res. Commun. 2006;348:697. doi: 10.1016/j.bbrc.2006.07.123. [DOI] [PubMed] [Google Scholar]
  • 100.Mange A, Nishida N, Milhavet O, McMahon HE, Casanova D, Lehmann S. J. Virol. 2000;74:3135. doi: 10.1128/jvi.74.7.3135-3140.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Pocchiari M, Schmittinger S, Masullo C. J. Gen. Virol. 1987;68:219. doi: 10.1099/0022-1317-68-1-219. [DOI] [PubMed] [Google Scholar]
  • 102.Dormont D. Br. Med. Bull. 2003;66:281. doi: 10.1093/bmb/66.1.281. [DOI] [PubMed] [Google Scholar]
  • 103.Pocchiari M, Casaccia P, Ladogana A. J Infect. Dis. 1989;160:795. doi: 10.1093/infdis/160.5.795. [DOI] [PubMed] [Google Scholar]
  • 104.Xi YG, Ingrosso L, Ladogana A, Masullo C, Pocchiari M. Nature. 1992;356:598. doi: 10.1038/356598a0. [DOI] [PubMed] [Google Scholar]
  • 105.McKenzie D, Kaczkowski J, Marsh R, Aiken JM. J. Virol. 1994;68:7534. doi: 10.1128/jvi.68.11.7534-7536.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Adjou KT, Demaimay R, Lasmezas C, Deslys J-P, Seman M, Dormont D. Antimicrob Agents Chemother. 1995;39:2810. doi: 10.1128/aac.39.12.2810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Adjou KT, Demaimay R, Deslys JP, Lasmezas CI, Beringue V, Demart S, Lamoury F, Seman M, Dormont D. J. Gen. Virol. 1999;80(Pt 4):1079. doi: 10.1099/0022-1317-80-4-1079. [DOI] [PubMed] [Google Scholar]
  • 108.Adjou KT, Privat N, Demart S, Deslys JP, Seman M, Hauw JJ, Dormont D. J. Comp Pathol. 2000;122:3. doi: 10.1053/jcpa.1999.0338. [DOI] [PubMed] [Google Scholar]
  • 109.Demaimay R, Adjou K, Lasmezas C, Lazarini F, Cherifi K, Seman M, Deslys JP, Dormont D. J. Gen. Virol. 1994;75:2499. doi: 10.1099/0022-1317-75-9-2499. [DOI] [PubMed] [Google Scholar]
  • 110.Demaimay R, Adjou KT, Beringue V, Demart S, Lasmezas CI, Deslys J-P, Seman M, Dormont D. J. Virol. 1997;71:9685. doi: 10.1128/jvi.71.12.9685-9689.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Marella M, Lehmann S, Grassi J, Chabry J. J. Biol. Chem. 2002;277:25457. doi: 10.1074/jbc.M203248200. [DOI] [PubMed] [Google Scholar]
  • 112.Adjou KT, Demaimay R, Lasmezas CI, Seman M, Deslys JP, Dormont D. Res. Virol. 1996;147:213. doi: 10.1016/0923-2516(96)89651-8. [DOI] [PubMed] [Google Scholar]
  • 113.Masullo C, Macchi G, Xi YG, Pocchiari M. J Infect Dis. 1992;165:784. doi: 10.1093/infdis/165.4.784. [DOI] [PubMed] [Google Scholar]
  • 114.Brandner S, Isenmann S, Raeber A, Fischer M, Sailer A, Kobayashi Y, Marino S, Weissmann C, Aguzzi A. Nature. 1996;379:339. doi: 10.1038/379339a0. [DOI] [PubMed] [Google Scholar]
  • 115.Mallucci GR, Ratte S, Asante EA, Linehan J, Gowland I, Jefferys JG, Collinge J. EMBO J. 2002;21:202. doi: 10.1093/emboj/21.3.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.Mallucci G, Dickinson A, Linehan J, Klohn PC, Brandner S, Collinge J. Science. 2003;302:871. doi: 10.1126/science.1090187. [DOI] [PubMed] [Google Scholar]
  • 117.Mallucci GR, White MD, Farmer M, Dickinson A, Khatun H, Powell AD, Brandner S, Jefferys JG, Collinge J. Neuron. 2007;53:325. doi: 10.1016/j.neuron.2007.01.005. [DOI] [PubMed] [Google Scholar]
  • 118.Tilly G, Chapuis J, Vilette D, Laude H, Vilotte JL. Biochem. Biophys. Res. Commun. 2003;305:548. doi: 10.1016/s0006-291x(03)00805-2. [DOI] [PubMed] [Google Scholar]
  • 119.Daude N, Marella M, Chabry J. J Cell Sci. 2003;116:2775. doi: 10.1242/jcs.00494. [DOI] [PubMed] [Google Scholar]
  • 120.Pfeifer A, Eigenbrod S, Al-Khadra S, Hofmann A, Mitteregger G, Moser M, Bertsch U, Kretzschmar H. J Clin. Invest. 2006;116:3204. doi: 10.1172/JCI29236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Qin K, Yang DS, Yang Y, Chishti MA, Meng LJ, Kretzschmar HA, Yip CM, Fraser PE, Westaway D. J. Biol. Chem. 2000;275:19121. doi: 10.1074/jbc.275.25.19121. [DOI] [PubMed] [Google Scholar]
  • 122.Wong E, Thackray AM, Bujdoso R. Biochem. J. 2004;380:273. doi: 10.1042/BJ20031767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Giese A, Levin J, Bertsch U, Kretzschmar H. Biochem. Biophys. Res. Commun. 2004;320:1240. doi: 10.1016/j.bbrc.2004.06.075. [DOI] [PubMed] [Google Scholar]
  • 124.Kuczius T, Buschmann A, Zhang W, Karch H, Becker K, Peters G, Groschup MH. Biol. Chem. 2004;385:739. doi: 10.1515/BC.2004.090. [DOI] [PubMed] [Google Scholar]
  • 125.Kim NH, Choi JK, Jeong BH, Kim JI, Kwon MS, Carp RI, Kim YS. FASEB J. 2005;19:783. doi: 10.1096/fj.04-2117fje. [DOI] [PubMed] [Google Scholar]
  • 126.Bocharova OV, Breydo L, Salnikov VV, Baskakov IV. Biochemistry. 2005;44:6776. doi: 10.1021/bi050251q. [DOI] [PubMed] [Google Scholar]
  • 127.Orem NR, Geoghegan JC, Deleault NR, Kascsak R, Supattapone S. J. Neurochem. 2006;96:1409. doi: 10.1111/j.1471-4159.2006.03650.x. [DOI] [PubMed] [Google Scholar]
  • 128.Treiber C, Simons A, Multhaup G. Biochemistry. 2006;45:6674. doi: 10.1021/bi060244h. [DOI] [PubMed] [Google Scholar]
  • 129.Sigurdsson EM, Brown DR, Alim MA, Scholtzova H, Carp R, Meeker HC, Prelli F, Frangione B, Wisniewski T. J. Biol. Chem. 2003;278:46199. doi: 10.1074/jbc.C300303200. [DOI] [PubMed] [Google Scholar]
  • 130.Pollera C, Lucchini B, Formentin E, Bareggi S, Poli G, Ponti W. Vet. Res. Commun. 2005;29(Suppl 2):253. doi: 10.1007/s11259-005-0055-8. [DOI] [PubMed] [Google Scholar]
  • 131.Fukuuchi T, Doh-ura K, Yoshihara S, Ohta S. Bioorg. Med. Chem. Lett. 2006;16:5982. doi: 10.1016/j.bmcl.2006.08.115. [DOI] [PubMed] [Google Scholar]
  • 132.Doh-ura K, Tamura K, Karube Y, Naito M, Tsuruo T, Kataoka Y. Cell Mol. Neurobiol. 2007;27:303. doi: 10.1007/s10571-006-9122-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133.Hijazi N, Shaked Y, Rosenmann H, Ben-Hur T, Gabizon R. Brain Res. 2003;993:192. doi: 10.1016/j.brainres.2003.09.014. [DOI] [PubMed] [Google Scholar]
  • 134.Tatzelt J, Prusiner SB, Welch WJ. EMBO J. 1996;15:6363. [PMC free article] [PubMed] [Google Scholar]
  • 135.Shaked GM, Fridlander G, Meiner Z, Taraboulos A, Gabizon R. J. Biol. Chem. 1999;274:17981. doi: 10.1074/jbc.274.25.17981. [DOI] [PubMed] [Google Scholar]
  • 136.Shaked GM, Engelstein R, Avraham I, Kahana E, Gabizon R. Brain Res. 2003;983:137. doi: 10.1016/s0006-8993(03)03045-2. [DOI] [PubMed] [Google Scholar]
  • 137.Engelstein R, Grigoriadis N, Greig NH, Ovadia H, Gabizon R. Neurobiol. Dis. 2005;18:282. doi: 10.1016/j.nbd.2004.10.008. [DOI] [PubMed] [Google Scholar]
  • 138.Furlow TW, Jr., Whitley RJ, Wilmes FJ. Lancet. 1982;2:564. doi: 10.1016/s0140-6736(82)90652-3. [DOI] [PubMed] [Google Scholar]
  • 139.Haig DA, Clarke MC. J. Gen. Virol. 1968;3:281. doi: 10.1099/0022-1317-3-2-281. [DOI] [PubMed] [Google Scholar]
  • 140.Cochran KW. J Gen. Virol. 1971;13:353. doi: 10.1099/0022-1317-13-2-353. [DOI] [PubMed] [Google Scholar]
  • 141.Kimberlin RH, Walker CA. Lancet. 1979;2:591. doi: 10.1016/s0140-6736(79)91654-4. [DOI] [PubMed] [Google Scholar]
  • 142.Tateishi J. J Neurol. Neurosurg. Psychiatry. 1981;44:723. doi: 10.1136/jnnp.44.8.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143.Rieger R, Edenhofer F, Lasmezas CI, Weiss S. Nat. Med. 1997;3:1383. doi: 10.1038/nm1297-1383. [DOI] [PubMed] [Google Scholar]
  • 144.Hundt C, Peyrin JM, Haik S, Gauczynski S, Leucht C, Rieger R, Riley ML, Deslys JP, Dormont D, Lasmezas CI, Weiss S. EMBO J. 2001;20:5876. doi: 10.1093/emboj/20.21.5876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Gauczynski S, Nikles D, El-Gogo S, Papy-Garcia D, Rey C, Alban S, Barritault D, Lasmezas CI, Weiss S. J Infect Dis. 2006;194:702. doi: 10.1086/505914. [DOI] [PubMed] [Google Scholar]
  • 146.Leucht C, Simoneau S, Rey C, Vana K, Rieger R, Lasmezas CI, Weiss S. EMBO Rep. 2003;4:290. doi: 10.1038/sj.embor.embor768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Zuber C, Knackmuss S, Rey C, Reusch U, Rottgen P, Frohlich T, Arnold GJ, Pace C, Mitteregger G, Kretzschmar HA, Little M, Weiss S. Mol. Immunol. 2008;45:144. doi: 10.1016/j.molimm.2007.04.030. [DOI] [PubMed] [Google Scholar]
  • 148.Zuber C, Ludewigs H, Weiss S. Vet. Microbiol. 2007;123:387. doi: 10.1016/j.vetmic.2007.04.005. [DOI] [PubMed] [Google Scholar]
  • 149.Nordstrom EK, Luhr KM, Ibanez C, Kristensson K. J Neurosci. 2005;25:8451. doi: 10.1523/JNEUROSCI.2349-05.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Bate C, Reid S, Williams A. J Biol. Chem. 2004;279:36405. doi: 10.1074/jbc.M404086200. [DOI] [PubMed] [Google Scholar]
  • 151.Ertmer A, Gilch S, Yun SW, Flechsig E, Klebl B, Stein-Gerlach M, Klein MA, Schatzl HM. J Biol. Chem. 2004;279:41918. doi: 10.1074/jbc.M405652200. [DOI] [PubMed] [Google Scholar]
  • 152.Yun SW, Ertmer A, Flechsig E, Gilch S, Riederer P, Gerlach M, Schatzl HM, Klein MA. J Neurovirol. 2007;13:328. doi: 10.1080/13550280701361516. [DOI] [PubMed] [Google Scholar]
  • 153.Supattapone S, Nguyen HO, Cohen FE, Prusiner SB, Scott MR. Proc. Natl. Acad. Sci. U. S. A. 1999;96:14529. doi: 10.1073/pnas.96.25.14529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154.Supattapone S, Wille H, Uyechi L, Safar J, Tremblay P, Szoka FC, Cohen FE, Prusiner SB, Scott MR. J. Virol. 2001;75:3453. doi: 10.1128/JVI.75.7.3453-3461.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 155.Solassol J, Crozet C, Perrier V, Leclaire J, Beranger F, Caminade AM, Meunier B, Dormont D, Majoral JP, Lehmann S. J Gen. Virol. 2004;85:1791. doi: 10.1099/vir.0.19726-0. [DOI] [PubMed] [Google Scholar]
  • 156.Bera A, Nandi PK. Arch. Virol. 2007;152:655. doi: 10.1007/s00705-006-0907-8. [DOI] [PubMed] [Google Scholar]
  • 157.Winklhofer KF, Tatzelt J. Biol. Chem. 2000;381:463. doi: 10.1515/BC.2000.061. [DOI] [PubMed] [Google Scholar]
  • 158.Otto M, Cepek L, Ratzka P, Doehlinger S, Boekhoff I, Wiltfang J, Irle E, Pergande G, Ellers-Lenz B, Windl O, Kretzschmar HA, Poser S, Prange H. Neurology. 2004;62:714. doi: 10.1212/01.wnl.0000113764.35026.ef. [DOI] [PubMed] [Google Scholar]
  • 159.Muller WE, Romero FJ, Perovic S, Pergande G, Pialoglou P. J Neurochem. 1997;68:2371. doi: 10.1046/j.1471-4159.1997.68062371.x. [DOI] [PubMed] [Google Scholar]
  • 160.Perovic S, Schroder HC, Pergande G, Ushijima H, Muller WE. Exp. Neurol. 1997;147:518. doi: 10.1006/exnr.1997.6559. [DOI] [PubMed] [Google Scholar]
  • 161.Dirikoc S, Priola SA, Marella M, Zsurger N, Chabry J. J Neurosci. 2007;27:9537. doi: 10.1523/JNEUROSCI.1942-07.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162.Brown DR, Schultz-Schaeffer WJ, Schmidt B, Kretzschmar HA. Exp. Neurol. 1997;146:104. doi: 10.1006/exnr.1997.6505. [DOI] [PubMed] [Google Scholar]
  • 163.Brown DR, Schmidt B, Kretzschmar HA. Neurobiol. Dis. 1998;4:410. doi: 10.1006/nbdi.1998.0169. [DOI] [PubMed] [Google Scholar]
  • 164.Choi SI, Ju WK, Choi EK, Kim J, Lea HZ, Carp RI, Wisniewski HM, Kim YS. Acta Neuropathol. 1998;96:279. doi: 10.1007/s004010050895. [DOI] [PubMed] [Google Scholar]
  • 165.Wong BS, Wang H, Brown DR, Jones IM. Biochem. Biophys. Res. Commun. 1999;259:352. doi: 10.1006/bbrc.1999.0802. [DOI] [PubMed] [Google Scholar]
  • 166.Brown DR, Schmidt B, Kretzschmar HA. J Neurochem. 1998;70:1686. doi: 10.1046/j.1471-4159.1998.70041686.x. [DOI] [PubMed] [Google Scholar]
  • 167.Brown DR, Nicholas RS, Canevari L. J Neurosci. Res. 2002;67:211. doi: 10.1002/jnr.10118. [DOI] [PubMed] [Google Scholar]
  • 168.Wong BS, Brown DR, Pan T, Whiteman M, Liu T, Bu X, Li R, Gambetti P, Olesik J, Rubenstein R, Sy MS. J Neurochem. 2001;79:689. doi: 10.1046/j.1471-4159.2001.00625.x. [DOI] [PubMed] [Google Scholar]
  • 169.Kim NH, Park SJ, Jin JK, Kwon MS, Choi EK, Carp RI, Kim YS. Brain Res. 2000;884:98. doi: 10.1016/s0006-8993(00)02907-3. [DOI] [PubMed] [Google Scholar]
  • 170.Brown DR, Wong B-S, Hafiz F, Clive C, Haswell S, Jones IM. Biochem. J. 1999;344:1. [PMC free article] [PubMed] [Google Scholar]
  • 171.Martin SF, Buron I, Espinosa JC, Castilla J, Villalba JM, Torres JM. Free Radic. Biol. Med. 2007;42:1723. doi: 10.1016/j.freeradbiomed.2007.03.005. [DOI] [PubMed] [Google Scholar]
  • 172.Kimata A, Nakagawa H, Ohyama R, Fukuuchi T, Ohta S, Doh-ura K, Suzuki T, Miyata N. J Med. Chem. 2007;50:5053. doi: 10.1021/jm070688r. [DOI] [PubMed] [Google Scholar]
  • 173.Bastianetto S, Ramassamy C, Dore S, Christen Y, Poirier J, Quirion R. Eur. J Neurosci. 2000;12:1882. doi: 10.1046/j.1460-9568.2000.00069.x. [DOI] [PubMed] [Google Scholar]
  • 174.Luo Y, Smith JV, Paramasivam V, Burdick A, Curry KJ, Buford JP, Khan I, Netzer WJ, Xu H, Butko P. Proc. Natl. Acad. Sci. U. S. A. 2002;99:12197. doi: 10.1073/pnas.182425199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 175.Colciaghi F, Borroni B, Zimmermann M, Bellone C, Longhi A, Padovani A, Cattabeni F, Christen Y, Di LM. Neurobiol. Dis. 2004;16:454. doi: 10.1016/j.nbd.2004.03.011. [DOI] [PubMed] [Google Scholar]
  • 176.Chambers MS, Atack JR, Broughton HB, Collinson N, Cook S, Dawson GR, Hobbs SC, Marshall G, Maubach KA, Pillai GV, Reeve AJ, MacLeod AM. J Med. Chem. 2003;46:2227. doi: 10.1021/jm020582q. [DOI] [PubMed] [Google Scholar]
  • 177.Collinson N, Kuenzi FM, Jarolimek W, Maubach KA, Cothliff R, Sur C, Smith A, Otu FM, Howell O, Atack JR, McKernan RM, Seabrook GR, Dawson GR, Whiting PJ, Rosahl TW. J Neurosci. 2002;22:5572. doi: 10.1523/JNEUROSCI.22-13-05572.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 178.Crozet C, Lin YL, Mettling C, Mourton-Gilles C, Corbeau P, Lehmann S, Perrier V. J Cell Sci. 2004;117:5591. doi: 10.1242/jcs.01484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 179.Kimberlin RH, Walker CA. Arch. Virol. 1983;78:9. doi: 10.1007/BF01310854. [DOI] [PubMed] [Google Scholar]
  • 180.Kimberlin RH, Walker CA. Antimicrob. Agents Chemother. 1986;30:409. doi: 10.1128/aac.30.3.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 181.Birkett CR, Hennion RM, Bembridge DA, Clarke MC, Chree A, Bruce ME, Bostock CJ. EMBO J. 2001;20:3351. doi: 10.1093/emboj/20.13.3351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 182.Adjou KT, Simoneau S, Sales N, Lamoury F, Dormont D, Papy-Garcia D, Barritault D, Deslys JP, Lasmezas CI. J Gen. Virol. 2003;84:2595. doi: 10.1099/vir.0.19073-0. [DOI] [PubMed] [Google Scholar]
  • 183.Schonberger O, Horonchik L, Gabizon R, Papy-Garcia D, Barritault D, Taraboulos A. Biochem. Biophys. Res. Commun. 2003;312:473. doi: 10.1016/j.bbrc.2003.10.150. [DOI] [PubMed] [Google Scholar]
  • 184.Proske D, Gilch S, Wopfner F, Schatzl HM, Winnacker EL, Famulok M. Chembiochem. 2002;3:717. doi: 10.1002/1439-7633(20020802)3:8<717::AID-CBIC717>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  • 185.Rhie A, Kirby L, Sayer N, Wellesley R, Disterer P, Sylvester I, Gill A, Hope J, James W, Tahiri-Alaoui A. J. Biol. Chem. 2003;278:39697. doi: 10.1074/jbc.M305297200. [DOI] [PubMed] [Google Scholar]

RESOURCES