Skip to main content
Cytotechnology logoLink to Cytotechnology
. 2002 Jan;38(1-3):147–153. doi: 10.1023/A:1021126703683

Real-time RT-PCR detection of retroviral contaminations of cells and cell lines

Katja Müller 1, Manfred Wirth 1,
PMCID: PMC3449918  PMID: 19003096

Abstract

We have developed a fast and sensitive on-line detection method for retroviruses using the PCR technology. The assay utilizes the endogenous reverse transcriptase activity in retroviral particles. In the presence of active reverse transcriptase, bacteriophage MS2 RNA is transcribed into cDNA and is subsequently amplified in a SYBR-Green-type LightCycler™ reaction. The method allows a qualitative and quantitative monitoring of RT-activity, is several orders of magnitude more sensitive than a standard RT assay and has a time requirement of 2.5 hours from harvest to result. The methodis useful for monitoring of cells and cell-derived products, viral vectors and recombinant proteins for the presence ofreplication-competent retroviruses (RCRs).

Keywords: adventitious agents, on-line RT-PCR, quantitation, retrovirus, viral diagnosis, virus

Full Text

The Full Text of this article is available as a PDF (298.5 KB).

References

  1. Anderson KB. Entry of murine retroviruses into mouse fibroblasts. Virology. 1983;125:85-98. doi: 10.1016/0042-6822(83)90065-x. [DOI] [PubMed] [Google Scholar]
  2. Arnold BA, Heppler RW&, Keller PM. One-step fluorescent probe product-enhanced reverse transcriptase assay. Biotechniques. 1998;25:98-106. doi: 10.2144/98251st06. [DOI] [PubMed] [Google Scholar]
  3. Chang A, Ostrove JM&, Bird RE. Development of an improved product enhanced reverse transcriptase assay. J Virol Methods. 1997;65:45-54. doi: 10.1016/s0166-0934(96)02168-4. [DOI] [PubMed] [Google Scholar]
  4. Cosset F-L, Takeuchi Y, Battini J-L, Weiss RA&, Collins MKL. High-Titer packaging cells producing recombinant retro-viruses resistant to human serum. J Virol. 1995;69:7430-7436. doi: 10.1128/jvi.69.12.7430-7436.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Deo Y, Ghebremariam H&, Cloyd M. Detection and characterization of murine ecotropic recombinant virus in myeloma and hybridoma cells. Hybridoma. 1994;13:69-76. doi: 10.1089/hyb.1994.13.69. [DOI] [PubMed] [Google Scholar]
  6. De Wit C, Fautz C&, Xu Y. Real-time quantitative PCR for retrovirus-like particle quantification in CHO cell culture. Biologicals. 2002;28:137-148. doi: 10.1006/biol.2000.0250. [DOI] [PubMed] [Google Scholar]
  7. Froud SJ, Birch J, MacLean C, Shepher AJ&, Smith KT. Prospects for Tomorrow Viral Contaminants Found in Mouse Cell Lines used in the Production of Biological Products. Dordrecht: Kluwer Academic Publishers; 1997. Animal Cell Technology: Products of Today; p. 681-686. [Google Scholar]
  8. Goff S, Traktman P&, Baltimore D. Isolation and properties of Moloney murine leukemia virus mutants use of a rapid assay for release fo virion reverse transcriptase. J Virol. 1981;38:239-248. doi: 10.1128/jvi.38.1.239-248.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Heinemeyer T, Klingenhoff A, Hansen W, Schumacher L, Hauser H&, Wirth M. A sensitive method for the detection of murine C-Type retroviruses. J Virol Methods. 1997;63:155-165. doi: 10.1016/s0166-0934(96)02124-6. [DOI] [PubMed] [Google Scholar]
  10. Karreman C, Karreman S&, Hauser H. Retroviral infection of syrian hamster BHK cells depends on age and susceptibility toward sialidase. Virology. 1996;220:46-50. doi: 10.1006/viro.1996.0284. [DOI] [PubMed] [Google Scholar]
  11. Lovatt A, Black J, Galbraith D, Doherty I, Moran MW, Shepherd AJ, Griffen A, Bailey A, Wilson N&, Smith KT. High througput detection of retrovirus-associated reverse transcriptase using an improved fluorescent product enhanced reverse transcriptase assay and its comparison to conventional detection methods. J Virol Methods. 1999;82:185-200. doi: 10.1016/s0166-0934(99)00111-1. [DOI] [PubMed] [Google Scholar]
  12. Lugert R, König H, Kurth R&, Tönjes RR. Specific suppression of false-positive signals in the product-enhanced reverse transcriptase assay. BioTechniques. 1996;20:210-217. [PubMed] [Google Scholar]
  13. Markowitz D, Goff S&, Bank A. A safe packaging line for gene transfer: Separating viral genes on two different plasmids. J Virol. 1988;62:1120-1124. doi: 10.1128/jvi.62.4.1120-1124.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Maudru T&, Peden K. Elimination of background signals in a modified polymerase chain reaction-based reverse transcriptase assay. J Virol Methods. 1997;66:247-261. doi: 10.1016/s0166-0934(97)00067-0. [DOI] [PubMed] [Google Scholar]
  15. Miller AD&, Buttimore C. Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol Cell Biol. 1986;6:2895-2902. doi: 10.1128/mcb.6.8.2895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Morgenstern JP&, Land H. Advanced mammalian gene transfer: High titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 1990;18:3587-3596. doi: 10.1093/nar/18.12.3587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pyra H, Böni J&, Schupbach J. Ultrasensitive retrovirus detection by a reverse transcriptase assay based on product enhancement. Proc Natl Acad Sci USA. 1994;91:1544-1548. doi: 10.1073/pnas.91.4.1544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Silver J, Maudru T, Fujita K&, Repaske R. A RT-PCR assay for the enzyme activity of reverse transcriptase capable of detecting single virions. Nucleic Acids Res. 1993;21:3593-3594. doi: 10.1093/nar/21.15.3593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Towers GJ, Stockholm D, Labbrousse-Najburg V, Carlier F, Danos O&, Pages J-C. One step screening of retroviral producer clones by real time quantitative PCR. J Gene Med. 1999;1:352-359. doi: 10.1002/(SICI)1521-2254(199909/10)1:5<352::AID-JGM57>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES