Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 May;79(10):3162–3166. doi: 10.1073/pnas.79.10.3162

Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells.

S H Leppla
PMCID: PMC346374  PMID: 6285339

Abstract

Anthrax toxin is composed of three proteins: protective antigen (PA), lethal factor (LF), and edema factor (EF). These proteins individually cause no known physiological effects in animals but in pairs produce two toxic actions. Injection of PA with LF causes death of rats in 60 min, whereas PA with EF causes edema in the skin of rabbits and guinea pigs. The mechanisms of action of these proteins have not been determined. It is shown here that EF is an adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] produced by Bacillus anthracis in an inactive form. Activation occurs upon contact with a heat-stable eukaryotic cell material. The specific activity of the resulting adenylate cyclase nearly equals that of the most active known cyclase. In Chinese hamster ovary cells exposed to PA and EF, cAMP concentrations increase without a lag to values about 200-fold above normal, remain high in the continued presence of toxin, and decrease rapidly after its removal. The increase in cAMP is completely blocked by excess LF. It is suggested that PA interacts with cells to form a receptor system by which EF and perhaps LF gain access to the cytoplasm.

Full text

PDF
3162

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonventre P. F. Differential Cytotoxicity of Bacillus anthracis and Bacillus cereus Culture Filtrates. J Bacteriol. 1965 Jul;90(1):284–285. doi: 10.1128/jb.90.1.284-285.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brooker G., Harper J. F., Terasaki W. L., Moylan R. D. Radioimmunoassay of cyclic AMP and cyclic GMP. Adv Cyclic Nucleotide Res. 1979;10:1–33. [PubMed] [Google Scholar]
  3. Chisari F. V., Northrup R. S. Pathophysiologic effects of lethal and immunoregulatory doses of cholera enterotoxin in the mouse. J Immunol. 1974 Sep;113(3):740–749. [PubMed] [Google Scholar]
  4. Craig J. P. A permeability factor (toxin) found in cholera stools and culture filtrates and its neutralization by convalescent cholera sera. Nature. 1965 Aug 7;207(997):614–616. doi: 10.1038/207614a0. [DOI] [PubMed] [Google Scholar]
  5. Fish D. C., Mahlandt B. G., Dobbs J. P., Lincoln R. E. Purification and properties of in vitro-produced anthrax toxin components. J Bacteriol. 1968 Mar;95(3):907–918. doi: 10.1128/jb.95.3.907-918.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fishman P. H. Mechanism of action of cholera toxin: studies on the lag period. J Membr Biol. 1980;54(1):61–72. doi: 10.1007/BF01875377. [DOI] [PubMed] [Google Scholar]
  7. Gill D. M. Mechanism of action of cholera toxin. Adv Cyclic Nucleotide Res. 1977;8:85–118. [PubMed] [Google Scholar]
  8. Gottesman M. M., LeCam A., Bukowski M., Pastan I. Isolation of multiple classes of mutants of CHO cells resistant to cyclic AMP. Somatic Cell Genet. 1980 Jan;6(1):45–61. doi: 10.1007/BF01538695. [DOI] [PubMed] [Google Scholar]
  9. HAINES B. W., KLEIN F., LINCOLN R. E. QUANTITATIVE ASSAY FOR CRUDE ANTHRAX TOXINS. J Bacteriol. 1965 Jan;89:74–83. doi: 10.1128/jb.89.1.74-83.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hewlett E., Wolff J. Soluble adenylate cyclase from the culture medium of Bordetella pertussis: purification and characterization. J Bacteriol. 1976 Aug;127(2):890–898. doi: 10.1128/jb.127.2.890-898.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hochman J., Insel P. A., Bourne H. R., Coffino P., Tomkins G. M. A structural gene mutation affecting the regulatory subunit of cyclic AMP-dependent protein kinase in mouse lymphoma cells. Proc Natl Acad Sci U S A. 1975 Dec;72(12):5051–5055. doi: 10.1073/pnas.72.12.5051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Johnson A. D., Spero L. Comparison of growth and toxin production in two vaccine strains of Bacillus anthracis. Appl Environ Microbiol. 1981 Jun;41(6):1479–1481. doi: 10.1128/aem.41.6.1479-1481.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Johnson G. S., Friedman R. M., Pastan I. Restoration of several morphological characteristics of normal fibroblasts in sarcoma cells treated with adenosine-3':5'-cyclic monphosphate and its derivatives. Proc Natl Acad Sci U S A. 1971 Feb;68(2):425–429. doi: 10.1073/pnas.68.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. KEPPIE J., HARRIS-SMITH P. W., SMITH H. THE CHEMICAL BASIS OF THE VIRULENCE OF BACILLUS ANTHRACIS. IX. ITS AGGRESSINS AND THEIR MODE OF ACTION. Br J Exp Pathol. 1963 Aug;44:446–453. [PMC free article] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. MOLNAR D. M., ALTENBERN R. A. ALTERATIONS IN THE BIOLOGICAL ACTIVITY OF PROTECTIVE ANTIGEN OF BACILLUS ANTHRACIS TOXIN. Proc Soc Exp Biol Med. 1963 Nov;114:294–297. [PubMed] [Google Scholar]
  17. Moss J., Vaughan M. Activation of adenylate cyclase by choleragen. Annu Rev Biochem. 1979;48:581–600. doi: 10.1146/annurev.bi.48.070179.003053. [DOI] [PubMed] [Google Scholar]
  18. PUZISS M., MANNING L. C., LYNCH J. W., BARCLAYE, ABELOW I., WRIGHT G. G. Large-scale production of protective antigen of Bacillus anthracis in anaerobic cultures. Appl Microbiol. 1963 Jul;11:330–334. doi: 10.1128/am.11.4.330-334.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. SMITH H., KEPPIE J., STANLEY J. L. The chemical basis of the virulence of Bacillus anthracis. V. The specific toxin produced by B. Anthracis in vivo. Br J Exp Pathol. 1955 Oct;36(5):460–472. [PMC free article] [PubMed] [Google Scholar]
  20. SMITH H., SARGEANT K., STANLEY J. L. Note on serological precipitation in gels as a criterion of purity of antigens. J Gen Microbiol. 1961 Sep;26:63–66. [PubMed] [Google Scholar]
  21. STANLEY J. L., SMITH H. The three factors of anthrax toxin: their immunogenicity and lack of demonstrable enzymic activity. J Gen Microbiol. 1963 May;31:329–337. doi: 10.1099/00221287-31-2-329. [DOI] [PubMed] [Google Scholar]
  22. Simon R. D. The use of an ultrasonic bath to disrupt cells suspended in volumes of less than 100 micro liters. Anal Biochem. 1974 Jul;60(1):51–58. doi: 10.1016/0003-2697(74)90130-4. [DOI] [PubMed] [Google Scholar]
  23. Takai K., Kurashina Y., Suzuki-Hori C., Okamoto H., Hayaishi O. Adenylate cyclase from Brevibacterium liquefaciens. I. Purification, crystallization, and some properties. J Biol Chem. 1974 Mar 25;249(6):1965–1972. [PubMed] [Google Scholar]
  24. Tao M., Lipmann F. Isolation of adenyl cyclase from Escherichia coli. Proc Natl Acad Sci U S A. 1969 May;63(1):86–92. doi: 10.1073/pnas.63.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vick J. A., Lincoln R. E., Klein F., Mahlandt B. G., Walker J. S., Fish D. C. Neurological and physiological responses of the primate to anthrax toxin. J Infect Dis. 1968 Feb;118(1):85–96. doi: 10.1093/infdis/118.1.85. [DOI] [PubMed] [Google Scholar]
  26. White A. A. Separation and purification of cyclic nucleotides by alumina column chromatography. Methods Enzymol. 1974;38:41–46. doi: 10.1016/0076-6879(74)38009-3. [DOI] [PubMed] [Google Scholar]
  27. Wilkie M. H., Ward M. K. Characterization of anthrax toxin. Fed Proc. 1967 Sep;26(5):1527–1531. [PubMed] [Google Scholar]
  28. Wolff J., Cook G. H., Goldhammer A. R., Berkowitz S. A. Calmodulin activates prokaryotic adenylate cyclase. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3841–3844. doi: 10.1073/pnas.77.7.3841. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES