Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Dec;79(23):7527–7531. doi: 10.1073/pnas.79.23.7527

Molecular and cellular pathogenesis of hemoglobin SC disease.

H F Bunn, C T Noguchi, J Hofrichter, G P Schechter, A N Schechter, W A Eaton
PMCID: PMC347373  PMID: 6961429

Abstract

Solution and cell studies were performed to ascertain why individuals with hemoglobin (Hb) SC have disease whereas those with Hb AS do not. The polymerization of deoxygenated mixtures containing sickle cell Hb (Hb S; alpha 2 beta 2(6)Glu leads to Val) and Hb C (alpha 2 beta 2(6)Glu leads to Lys) was investigated by measurements of delay times and solubilities. In mixtures containing more than 40% Hb S, polymerization takes place by the same mechanism as in solutions of Hb S alone, with no evidence for independent crystallization of Hb C. A detailed comparison of Hb S/Hb C and Hb S/Hb A mixtures with identical concentrations and proportions of Hb S show that there is no significant difference in the tendency of Hb C and Hb A to copolymerize with Hb S. In 50:50 Hb S/Hb C mixtures, polymerization is about 15 times more rapid than in 40:60 Hb S/Hb A mixtures at the same total Hb concentration. Measurements on density-fractionated erythrocytes show that SC cells contain a higher total Hb concentration and a more uniform distribution of reticulocytes compared to normal (AA) or sickle trait (AS) cells. The concentration distribution for C trait (AC) cells is much closer to that of SC cells than to AS or AA cells. It appears, therefore, that the presence of Hb C results in the SC cell beginning its life with an abnormally high Hb concentration. From these findings we conclude that both the larger proportion of Hb S and the higher intracellular Hb concentration contribute to the pathogenesis of Hb SC disease.

Full text

PDF
7527

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bannerman R. M., Serjeant B., Seakins M., England J. M., Serjeant G. R. Determinants of haemoglobin level in sickle cell-haemoglobin C disease. Br J Haematol. 1979 Sep;43(1):49–56. doi: 10.1111/j.1365-2141.1979.tb03718.x. [DOI] [PubMed] [Google Scholar]
  2. Bertles J. F., Rabinowitz R., Döbler J. Hemoglobin interaction: modification of solid phase composition in the sickling phenomenon. Science. 1970 Jul 24;169(3943):375–377. doi: 10.1126/science.169.3943.375. [DOI] [PubMed] [Google Scholar]
  3. Brittenham G. Genetic model for observed distributions of proportions of haemoglobin in sickle-cell trait. Nature. 1977 Aug 18;268(5621):635–636. doi: 10.1038/268635a0. [DOI] [PubMed] [Google Scholar]
  4. CHARACHE S., CONLEY C. L. RATE OF SICKLING OF RED CELLS DURING DEOXYGENATION OF BLOOD FROM PERSONS WITH VARIOUS SICKLING DISORDERS. Blood. 1964 Jul;24:25–48. [PubMed] [Google Scholar]
  5. Cheetham R. C., Huehns E. R., Rosemeyer M. A. Participation of haemoglobins A, F, A2 and C in polymerisation of haemoglobin S. J Mol Biol. 1979 Mar 25;129(1):45–61. doi: 10.1016/0022-2836(79)90058-5. [DOI] [PubMed] [Google Scholar]
  6. Clark M. R., Unger R. C., Shohet S. B. Monovalent cation composition and ATP and lipid content of irreversibly sickled cells. Blood. 1978 Jun;51(6):1169–1178. [PubMed] [Google Scholar]
  7. Coletta M., Hofrichter J., Ferrone F. A., Eaton W. A. Kinetics of sickle haemoglobin polymerization in single red cells. Nature. 1982 Nov 11;300(5888):194–197. doi: 10.1038/300194a0. [DOI] [PubMed] [Google Scholar]
  8. Corash L. M., Piomelli S., Chen H. C., Seaman C., Gross E. Separation of erythrocytes according to age on a simplified density gradient. J Lab Clin Med. 1974 Jul;84(1):147–151. [PubMed] [Google Scholar]
  9. Eaton W. A., Hofrichter J., Ross P. D. Editorial: Delay time of gelation: a possible determinant of clinical severity in sickle cell disease. Blood. 1976 Apr;47(4):621–627. [PubMed] [Google Scholar]
  10. Edelstein S. J. Molecular topology in crystals and fibers of hemoglobin S. J Mol Biol. 1981 Aug 25;150(4):557–575. doi: 10.1016/0022-2836(81)90381-8. [DOI] [PubMed] [Google Scholar]
  11. Fabry M. E., Nagel R. L. Heterogeneity of red cells in the sickler: a characteristic with practical clinical and pathophysiological implications. Blood Cells. 1982;8(1):9–15. [PubMed] [Google Scholar]
  12. Ferrone F. A., Hofrichter J., Sunshine H. R., Eaton W. A. Kinetic studies on photolysis-induced gelation of sickle cell hemoglobin suggest a new mechanism. Biophys J. 1980 Oct;32(1):361–380. doi: 10.1016/S0006-3495(80)84962-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. GRIGGS R. C., HARRIS J. W. The biophysics of the variants of sickle-cell disease. AMA Arch Intern Med. 1956 Mar;97(3):315–326. doi: 10.1001/archinte.1956.00250210061005. [DOI] [PubMed] [Google Scholar]
  14. Harrington J. P., Elbaum D., Bookchin R. M., Wittenberg J. B., Nagel R. L. Ligand kinetics of hemoglobin S containing erythrocytes. Proc Natl Acad Sci U S A. 1977 Jan;74(1):203–206. doi: 10.1073/pnas.74.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hofrichter J., Ross P. D., Eaton W. A. Supersaturation in sickle cell hemoglobin solutions. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3035–3039. doi: 10.1073/pnas.73.9.3035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Huisman T. H. Trimodality in the percentages of beta chain variants in heterozygotes: the effect of the number of active Hbalpha structural loci. Hemoglobin. 1977;1(4):349–382. doi: 10.3109/03630267708996895. [DOI] [PubMed] [Google Scholar]
  17. Noguchi C. T., Schechter A. N. The intracellular polymerization of sickle hemoglobin and its relevance to sickle cell disease. Blood. 1981 Dec;58(6):1057–1068. [PubMed] [Google Scholar]
  18. Noguchi C. T., Torchia D. A., Schechter A. N. Determination of deoxyhemoglobin S polymer in sickle erythrocytes upon deoxygenation. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5487–5491. doi: 10.1073/pnas.77.9.5487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Noguchi C. T., Torchia D. A., Schechter A. N. Polymerization of hemoglobin in sickle trait erythrocytes and lysates. J Biol Chem. 1981 May 10;256(9):4168–4171. [PubMed] [Google Scholar]
  20. SINGER K., SINGER L. Studies on abnormal hemoglobins. VIII. The gelling phenomenon of sickle cell hemoglobin: its biologic and diagnostic significance. Blood. 1953 Nov;8(11):1008–1023. [PubMed] [Google Scholar]
  21. Serjeant G. R., Serjeant B. E. A comparison of erythrocyte characteristics in sickle cell syndromes in Jamaica. Br J Haematol. 1972 Aug;23(2):205–213. doi: 10.1111/j.1365-2141.1972.tb03473.x. [DOI] [PubMed] [Google Scholar]
  22. Shaeffer J. R., Schmidt G. J., Kingston R. E., Bunn H. F. Synthesis of hemoglobin Cranston, and elongated beta chain variant. J Mol Biol. 1980 Jul 5;140(3):377–389. doi: 10.1016/0022-2836(80)90390-3. [DOI] [PubMed] [Google Scholar]
  23. Sunshine H. R., Hofrichter J., Eaton W. A. Gelation of sickle cell hemoglobin in mixtures with normal adult and fetal hemoglobins. J Mol Biol. 1979 Oct 9;133(4):435–467. doi: 10.1016/0022-2836(79)90402-9. [DOI] [PubMed] [Google Scholar]
  24. Sunshine H. R., Hofrichter J., Eaton W. A. Requirement for therapeutic inhibition of sickle haemoglobin gelation. Nature. 1978 Sep 21;275(5677):238–240. doi: 10.1038/275238a0. [DOI] [PubMed] [Google Scholar]
  25. Sunshine H. R., Hofrichter J., Ferrone F. A., Eaton W. A. Oxygen binding by sickle cell hemoglobin polymers. J Mol Biol. 1982 Jun 25;158(2):251–273. doi: 10.1016/0022-2836(82)90432-6. [DOI] [PubMed] [Google Scholar]
  26. TOSTESON D. C., CARLSEN E., DUNHAM E. T. The effects of sickling on ion transport. I. Effect of sickling on potassium transport. J Gen Physiol. 1955 Sep 20;39(1):31–53. doi: 10.1085/jgp.39.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zarkowsky H. S., Hochmuth R. M. Sickling times of individual erythrocytes at zero Po2. J Clin Invest. 1975 Oct;56(4):1023–1034. doi: 10.1172/JCI108149. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES