Summary
Select functional outcome tests commonly used for evaluating sensorimotor and cognitive capacity in rodents with focal intracerebral ischemic or hemorrhagic injury are described, along with upgrades and issues of concern for translational research. An emphasis is placed on careful quantitative and qualitative assessment of acute and long-term behavioral deficits, and on avoidance of frequent pitfalls. Methods for detecting different degrees of injury and treatment-related improvements are included. Determining the true potential of an intervention requires a set of behavioral analyses that can monitor compensatory learning. In a number of preclinical outcome tests, animals can develop remarkably effective “tricks” that are difficult to detect but frequently lead to dramatic improvements in performance, particularly with repeated practice. However, some interventions may facilitate learning without promoting brain repair, but these may not translate into a meaningful level of benefit in the clinic. Additionally, it is important to determine whether there are any preinjury functional asymmetries in order to accurately assess damage-related changes in behavior. This is illustrated by the fact that some animals have chronic endogenous asymmetries and that others, albeit infrequently, can sustain a spontaneous cerebral stroke, without any experimental induction, that can lead to chronic deficits as reflected by behavioral, imaging, and histological analyses. Finally, a useful new modification of the water maze that involves moving the platform from trial to trial within the target quadrant is reviewed, and its advantages over the standard version are discussed.
Key Words: Stroke, degeneration, behavior, cognitive, memory, sensorimotor
References
- 1.Benton AL. Jacque Loeb and the method of double stimulation. J Hist Med Allied Sci. 1952;11:47–53. doi: 10.1093/jhmas/xi.1.47. [DOI] [PubMed] [Google Scholar]
- 2.Benton AL, Levin HS. An experimental study of ‘obscuration’. Neurology. 1972;22:1176–1181. doi: 10.1212/WNL.22.11.1176. [DOI] [PubMed] [Google Scholar]
- 3.Schallert T, Whishaw IQ. Bilateral cutaneous stimulation of the somatosensory system in hemidecorticate rats. Behav Neurosci. 1984;98:518–540. doi: 10.1037/0735-7044.98.3.518. [DOI] [PubMed] [Google Scholar]
- 4.Schallert T, Whishaw IQ. Neonatal hemidecortication and bilateral cutaneous stimulation in rats. Devel Psychobiol. 1985;18:501–514. doi: 10.1002/dev.420180607. [DOI] [PubMed] [Google Scholar]
- 5.Schallert T, Upchurch M, Lobaugh N, et al. Tactile extinction: distinguishing between sensorimotor and motor asymmetries in rats with unilateral nigrostriatal damage. Pharmacol Biochem Behav. 1982;16:455–462. doi: 10.1016/0091-3057(82)90452-X. [DOI] [PubMed] [Google Scholar]
- 6.Schallert T, Upchurch M, Wilcox RE, Vaughn DM. Posture-independent sensorimotor analysis of inter-hemispheric receptor asymmetries in neostriatum. Pharmacol Biochem Behav. 1983;18:753–759. doi: 10.1016/0091-3057(83)90019-9. [DOI] [PubMed] [Google Scholar]
- 7.Schallert T, Fleming SM, Leasure JL, Tillerson JL, Bland ST. CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, Parkinsonism, and spinal cord injury. Neuropharmacology. 2000;39:777–787. doi: 10.1016/S0028-3908(00)00005-8. [DOI] [PubMed] [Google Scholar]
- 8.Fleming SM, Delville Y, Schallert T. An intermittent, controlled-rate slow progressive degeneration model of Parkinson’s disease: antiparkinson effects of Sinemet and protective effects of methyl-phenidate. Behav Brain Res. 2005;156:201–213. doi: 10.1016/j.bbr.2004.05.024. [DOI] [PubMed] [Google Scholar]
- 9.Markgraf CG, Green EJ, Hurwitz BE, et al. Sensorimotor and cognitive consequences of middle cerebral artery occlusion in rats. Brain Res. 1992;575:238–246. doi: 10.1016/0006-8993(92)90085-N. [DOI] [PubMed] [Google Scholar]
- 10.Barth TM, Jones TA, Schallert T. Functional subdivisions of the rat somatic sensorimotor cortex. Behav Brain Res. 1990;39:73–95. doi: 10.1016/0166-4328(90)90122-U. [DOI] [PubMed] [Google Scholar]
- 11.Schallert T, Hernandez TD, Barth TM. Recovery of function after brain damage: severe and chronic disruption by diazepam. Brain Res. 1986;379:104–111. doi: 10.1016/0006-8993(86)90261-1. [DOI] [PubMed] [Google Scholar]
- 12.Hernandez TD, Schallert T. Seizures and recovery from experimental brain damage. Exp Neurol. 1988;102:318–324. doi: 10.1016/0014-4886(88)90226-9. [DOI] [PubMed] [Google Scholar]
- 13.Hua Y, Schallert T, Keep RF, Wu J, Hoff JT, Xi G. Behavioral tests after intracerebral hemorrhage in the rat. Stroke. 2002;33:2478–2484. doi: 10.1161/01.STR.0000032302.91894.0F. [DOI] [PubMed] [Google Scholar]
- 14.Karhunen H, Virtanen T, Schallert T, Sivenius J, Jolkkonen J. Forelimb use after focal cerebral ischemia in rats treated with an alpha 2-adrenoceptor antagonist. Pharmacol Biochem Behav. 2003;74:663–669. doi: 10.1016/S0091-3057(02)01053-5. [DOI] [PubMed] [Google Scholar]
- 15.Maclellan CL, Grams J, Adams K, Colbourne F. Combined use of a cytoprotectant and rehabilitation therapy after severe intracerebral hemorrhage in rats. Brain Res. 2005;1063:40–47. doi: 10.1016/j.brainres.2005.09.027. [DOI] [PubMed] [Google Scholar]
- 16.Roof RL, Schielke GP, Ren X, Hall ED. A comparison of longterm functional outcome after 2 middle cerebral artery occlusion models in rats. Stroke. 2001;32:2648–2657. doi: 10.1161/hs1101.097397. [DOI] [PubMed] [Google Scholar]
- 17.Nakamura T, Xi G, Hua Y, Schallert T, Hoff JT, Keep RF. Intracerebral hemorrhage in mice: model characterization and application for genetically modified mice. J Cereb Blood Flow Metab. 2004;24:487–494. doi: 10.1097/00004647-200405000-00002. [DOI] [PubMed] [Google Scholar]
- 18.Wu J, Hua Y, Keep RF, Schallert T, Hoff JT, Xi G. Oxidative brain injury from extravasated erythrocytes after intracerebral hemorrhage. Brain Res. 2002;953:45–52. doi: 10.1016/S0006-8993(02)03268-7. [DOI] [PubMed] [Google Scholar]
- 19.Li X, Blizzard KK, Zeng Z, DeVries AC, Hum PD, McCullough LD. Chronic behavioral testing after focal ischemia in the mouse: functional recovery and the effects of gender. Exp Neurol. 2004;187:94–104. doi: 10.1016/j.expneurol.2004.01.004. [DOI] [PubMed] [Google Scholar]
- 20.Hua Y, Wu JM, Pecina S, et al. Ischemic preconditioning procedure induces behavioral deficits in the absence of brain injury? Neurolog Res. 2005;27:261–267. doi: 10.1179/016164105X25270. [DOI] [PubMed] [Google Scholar]
- 21.Schallert T, Kozlowski DA, Humm JL, Cocke RR. Use-dependent structural events in recovery of function. Adv Neurol. 1997;73:229–238. [PubMed] [Google Scholar]
- 22.Tillerson JL, Cohen AD, Philhower J, Miller GW, Zigmond MJ, Schallert T. Forced limb-use effects on the behavioral and neurochemical effects of 6-hydroxydopamine. J Neurosci. 2001;21:4427–4435. doi: 10.1523/JNEUROSCI.21-12-04427.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Tillerson JL, Cohen AD, Caudle WM, Zigmond MJ, Schallert T, Miller GW. Forced nonuse in unilateral parkinsonian rats exacerbates injury. J Neurosci. 2002;22:6790–6799. doi: 10.1523/JNEUROSCI.22-15-06790.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Schallert T, Tillerson JL. Intervention strategies for degeneration of dopamine neurons in parkinsonism: optimizing behavioral assessment of outcome. In: Emerich DF, Dean RLI, Sanberg PR, editors. CNS diseases: innovate models of CNS diseases from molecule to therapy. Totowa, New Jersey: Humana Press; 2000. pp. 131–151. [Google Scholar]
- 25.Woodlee MT, Asseo-Garcia AM, Zhao X, Liu SJ, Jones TA, Schallert T. Testing forelimb placing “across the midline” reveals distinct, lesion-dependent patterns of recovery in rats. Exp Neurol. 2005;191:310–317. doi: 10.1016/j.expneurol.2004.09.005. [DOI] [PubMed] [Google Scholar]
- 26.Schallert T, Woodlee MT. Brain-dependent movements and cerebral-spinal connections: Key targets of cellular and behavioral enrichment in CNS injury models. J Rehabil Res Dev. 2003;40:S9–S17. doi: 10.1682/JRRD.2003.08.0009. [DOI] [PubMed] [Google Scholar]
- 27.Wolgin DL, Kehoe P. Cortical KC1 reinstates forelimb placing following damage to the internal capsule. Physiol Behav. 1983;31:197–202. doi: 10.1016/0031-9384(83)90118-X. [DOI] [PubMed] [Google Scholar]
- 28.Jones TA, Schallert T. Overgrowth and pruning of dendrites in adult rats recovering from neocortical damage. Brain Res. 1992;581:156–160. doi: 10.1016/0006-8993(92)90356-E. [DOI] [PubMed] [Google Scholar]
- 29.Jones TA, Schallert T. Use-dependent growth of pyramidal neurons after neocortex damage. J Neurosci. 1994;14:2140–2152. doi: 10.1523/JNEUROSCI.14-04-02140.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Schallert T, Leasure JL, Kolb B. Experience-associated structural events, subependymal proliferation activity, and functional recovery after injury to the central nervous system: a review. J Cereb Blood Flow Metab. 2000;20:1513–1528. doi: 10.1097/00004647-200011000-00001. [DOI] [PubMed] [Google Scholar]
- 31.Chu CJ, Jones TA. Experience-dependent structural plasticity in cortex heterotopic to focal cortical damage. Exp Neurol. 2002;1666:403–414. doi: 10.1006/exnr.2000.7509. [DOI] [PubMed] [Google Scholar]
- 32.Luke LM, Allred RP, Jones TA. Unilateral ischemic sensorimotor cortical damage induces contralesional synaptogenesis and enhances skilled forelimb reaching with the ipsilateral forelimb in adult male rats. Synapse. 2004;54:187–199. doi: 10.1002/syn.20080. [DOI] [PubMed] [Google Scholar]
- 33.Zhang L, Schallert T, Zhang ZG, et al. A test for detecting longterm sensorimotor dysfunction in the mouse after focal cerebral ischemia. J Neurosci Methods. 2002;117:207–214. doi: 10.1016/S0165-0270(02)00114-0. [DOI] [PubMed] [Google Scholar]
- 34.Schallert T, Woodlee MT, Fleming SM. Disentangling multiple types of recovery from brain injury. In: Krieglstein J, Klumpp S, editors. Pharmacology of cerebral ischemia. Stuttgart: Medpharm Scientific Publishers; 2002. pp. 201–216. [Google Scholar]
- 35.Bliss T, Kelly S, Ankur S, et al. Transplantation of hNT neurons into the ischemic cortex: cell survival and effect on sensorimotor behavior. J Neurosci Res. 2006;83:1004–1014. doi: 10.1002/jnr.20800. [DOI] [PubMed] [Google Scholar]
- 36.Barth TM, Grant ML, Schallert T. Effects of MK-801 on recovery from sensorimotor cortex lesions. Stroke. 1990;21:153–157. [PubMed] [Google Scholar]
- 37.Morris RGM. Spatial localization does not require the presence of local cues. Learn Motiv. 1981;12:239–260. doi: 10.1016/0023-9690(81)90020-5. [DOI] [Google Scholar]
- 38.Choi SH, Woodlee MT, Hong JJ, Schallert T. A simple modification of the water maze test to enhance daily detection of spatial memory in rats and mice. J Neurosci Methods. 2006;156:182–193. doi: 10.1016/j.jneumeth.2006.03.002. [DOI] [PubMed] [Google Scholar]
- 39.Morris RGM, Garrud P, Rawlins HN. Place navigation impaired in rats with hippocampal lesions. Nature. 1982;297:681–683. doi: 10.1038/297681a0. [DOI] [PubMed] [Google Scholar]
- 40.Sutherland RJ, Kolb B, Whishaw IQ. Spatial mapping: definitive disruption by hippocampal or medial frontal cortical damage in the rat. Neurosci Lett. 1982;31:271–276. doi: 10.1016/0304-3940(82)90032-5. [DOI] [PubMed] [Google Scholar]
- 41.Russell JC, Towns DR, Anderson SH, Clout MN. Intercepting the first rat ashore. Nature. 2005;437:1107–1107. doi: 10.1038/4371107a. [DOI] [PubMed] [Google Scholar]
- 42.Whishaw IQ, Schallert T. Hippocampal RSA (theta), apnea, bradycardia and effects of atropine during underwater swimming in the rat. Electroencephalogr Clin Neurophysiol. 1977;42:389–396. doi: 10.1016/0013-4694(77)90175-4. [DOI] [PubMed] [Google Scholar]
- 43.D’Hooge R, De Deyn PP. Applications of the Morris water maze in the study of learning and memory. Brain Res Rev. 2001;36:60–90. doi: 10.1016/S0165-0173(01)00067-4. [DOI] [PubMed] [Google Scholar]
- 44.Day LB, Schallert T. Anticholinergic effects on acquisition of place learning in the Morris water task: spatial mapping deficit or inability to inhibit nonplace strategies? Behav Neurosci. 1996;110:998–1005. doi: 10.1037/0735-7044.110.5.998. [DOI] [PubMed] [Google Scholar]
- 45.Day LB, Weisand M, Sutherland RJ, Schallert T. The hippocampus is not necessary for a place response but may be necessary for pliancy. Behav Neurosci. 1999;113:914–924. doi: 10.1037/0735-7044.113.5.914. [DOI] [PubMed] [Google Scholar]
- 46.Whishaw IQ, Cassel JC, Jarrad LE. Rats with fimbria-fornix lesions display a place response in a swimming pool: a dissociation between getting there and knowing where. J Neurosci. 1995;15:5779–5788. doi: 10.1523/JNEUROSCI.15-08-05779.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Kimble DP. Hippocampus and internal inhibition. Psychol Bull. 1968;70:285–295. doi: 10.1037/h0026470. [DOI] [PubMed] [Google Scholar]
- 48.Karhunen H, Pitkanen A, Virtanen T, et al. Long-term functional consequences of transient occlusion of the middle cerebral artery in rats: a 1-year follow-up of the development of epileptogenesis and memory impairment in relation to sensorimotor deficits. Epilepsy Res. 2003;54:1–10. doi: 10.1016/S0920-1211(03)00034-2. [DOI] [PubMed] [Google Scholar]
- 49.Hodges H. Maze procedures: the radial-arm and water maze compared. Brain Res Cogn Brain Res. 1996;3–4:167–181. doi: 10.1016/0926-6410(96)00004-3. [DOI] [PubMed] [Google Scholar]
- 50.Gerlai R, Roder J. Spatial and nonspatial learning in mice: effects of S100 beta overexpression and age. Neurobiol Learn Mem. 1996;66:143–154. doi: 10.1006/nlme.1996.0055. [DOI] [PubMed] [Google Scholar]
- 51.Lindner MD, Schallert T. Aging and atropine effects on spatial navigation in the Morris water task. Behav Neurosci. 1988;102:621–634. doi: 10.1037/0735-7044.102.5.621. [DOI] [PubMed] [Google Scholar]
- 52.Buresova O, Krekule I, Zahalka A, Bures J. On-demand platform improves accuracy of the Morris water maze procedure. J Neurosci Methods. 1985;15:63–72. doi: 10.1016/0165-0270(85)90062-7. [DOI] [PubMed] [Google Scholar]
- 53.Spooner RI, Thomson A, Hall J, Morris RG, Salter SH. The Atlantis platform: a new design and further developments of Buresova’s on-demand platform for the water maze. Learn Mem. 1994;1:203–211. [PubMed] [Google Scholar]
- 54.Whishaw IQ. Lateralization and reaching skill related: results and implications from a large sample of Long-Evans rats. Behav Brain Res. 1992;52:45–48. doi: 10.1016/S0166-4328(05)80323-7. [DOI] [PubMed] [Google Scholar]
- 55.Montoya CP, Campbell-Hope LJ, Pemberton KD, Dunnett SB. The “staircase test”: a measure of independent forelimb reaching and grasping abilities in rats. J Neurosci Methods. 1991;36:219–228. doi: 10.1016/0165-0270(91)90048-5. [DOI] [PubMed] [Google Scholar]
- 56.Adkins-Muir DL, Jones TA. Cortical electrical stimulation combined with rehabilitative training: enhanced functional recovery and dendritic plasticity following focal cortical ischemia in rats. Neurol Res. 2003;25:780–788. doi: 10.1179/016164103771953853. [DOI] [PubMed] [Google Scholar]
- 57.Cenci MA, Whishaw IQ, Schallert T. Animal models of neurological deficits: how relevant is the rat? Nat Rev Neurosci. 2002;3:574–579. doi: 10.1038/nrn877. [DOI] [PubMed] [Google Scholar]
- 58.Whishaw IQ, Schallert T, Kolb B. An analysis of feeding and sensorimotor abilities of rats after decortication. J Comp Physiol Psychol. 1981;95:85–103. doi: 10.1037/h0077760. [DOI] [PubMed] [Google Scholar]
- 59.Stoltz S, Humm JL, Schallert T. Cortical injury impairs contralateral forelimb immobility during swimming: a simple test for loss of inhibitory motor control. Behav Brain Res. 1999;106:127–132. doi: 10.1016/S0166-4328(99)00100-X. [DOI] [PubMed] [Google Scholar]
- 60.Kolb B, Tomie JA. Recovery from early cortical damage in rats. IV. Effects of hemidecortication at 1, 5, or 10 days of age on cerebral anatomy and behavior. Behav Brain Res. 1988;28:259–274. doi: 10.1016/0166-4328(88)90129-5. [DOI] [PubMed] [Google Scholar]
- 61.Felt BT, Schallert T, Shao J, Liu Y, Li X, Barks JD. Early appearance of functional deficits after neonatal excitotoxic and hypoxicischemic injury: fragile recovery after development and role of the NMDA receptor. Dev Neurosci. 2002;24:418–425. doi: 10.1159/000069053. [DOI] [PubMed] [Google Scholar]
- 62.Kleim JA, Jones TA, Schallert T. Motor enrichment and the induction of plasticity before and after brain injury. Neurochem Res. 2003;28:1757–1769. doi: 10.1023/A:1026025408742. [DOI] [PubMed] [Google Scholar]
- 63.Risedal A, Zeng J, Johansson BB. Early training may exacerbate brain damage after focal brain ischemia in the rat. J Cereb Blood Flow Metab. 1999;19:997–1003. doi: 10.1097/00004647-199909000-00007. [DOI] [PubMed] [Google Scholar]
- 64.DeBow SB, McKenna JE, Kolb B, et al. Immediate constraint-induced movement therapy causes local hyperthermia and exacerbates cerebral injury in rats. Can J Physiol Pharmacol. 2004;82:231–237. doi: 10.1139/y04-013. [DOI] [PubMed] [Google Scholar]
- 65.Bland ST, Schallert T, Strong R, Aronowski J, Grotta JC, Feeney DM. Early exclusive use of the affected forelimb after moderate transient focal ischemia in rats: functional and anatomic outcome. Stroke. 2000;31:1144–1152. doi: 10.1161/01.STR.31.5.1144. [DOI] [PubMed] [Google Scholar]
- 66.Schallert T, Fleming SM, Woodlee MT. Should the injured and intact hemispheres be treated differently during the early phases of physical restorative therapy in experimental stroke or parkinsonism? Phys Med Rehab Clin. 2003;14:1–20. doi: 10.1016/S1047-9651(02)00063-3. [DOI] [PubMed] [Google Scholar]
- 67.Schallert T, Lindner MD. Rescuing neurons from trans-synaptic degeneration after brain damage: helpful, harmful, or neutral in recovery of function. Can J Psychol. 1990;44:276–292. doi: 10.1037/h0084244. [DOI] [PubMed] [Google Scholar]