Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1971 Jun;21(6):1080–1088. doi: 10.1128/am.21.6.1080-1088.1971

Influence of Na+ on Synthesis of Macromolecules by a Marine Bacterium

C D Webb 1,1, W J Payne 1
PMCID: PMC377348  PMID: 4327612

Abstract

Resting cells of Vibrio natriegens acquired the ability to take up 14C-labeled mannitol in media containing Na+ and K+. But, the cells took up a significant quantity of the label as well in the presence of 0.3 m K+ and no Na+. The label was distributed throughout the cells in both systems. Cells incubated in mannitol minimal culture medium proliferated and synthesized approximately nine times as much protein in the presence of Na+ and K+ as those incubated in the presence of mannitol and 0.3 m K+. The bacteria did not proliferate in the absence of Na+. Cells incubated in medium containing mannitol and Na+ and K+ synthesized approximately twice the quantity of deoxyribonucleic acid and ribonucleic acid as those incubated in medium containing mannitol and 0.3 m K+ but no Na+. A significant amount of mannitolbinding protein was synthesized in the membranes of V. natriegens incubated in the presence of mannitol and Na+ and K+, but only a small quantity was produced in medium containing mannitol and 0.3 m K+ but no Na+. A binding fraction comprising at least two proteins (both with molecular weight near 34,000) was isolated by gel electrophoresis from other components of a K2CO3-extract of membrane protein from mannitol-grown cells. This binding fraction mediated phosphorylation of mannitol at the expense of either adenosine triphosphate or phosphoenolpyruvate. It was then found that mannitol-grown, but not broth-grown, cells contained nicotinamide adenine dinucleotide-linked mannitol-1-phosphate dehydrogenase. Neither contained mannitol dehydrogenase.

Full text

PDF
1080

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brewer J. M., Ashworth R. B. Disc electrophoresis. J Chem Educ. 1969 Jan;46(1):41–45. doi: 10.1021/ed046p41. [DOI] [PubMed] [Google Scholar]
  2. Citarella R. V., Colwell R. R. Polyphasic taxonomy of the genus Vibrio: polynucleotide sequence relationships among selected Vibrio species. J Bacteriol. 1970 Oct;104(1):434–442. doi: 10.1128/jb.104.1.434-442.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. FLANNERY W. L. Current status of knowledge of halophilic bacteria. Bacteriol Rev. 1956 Jun;20(2):49–66. doi: 10.1128/br.20.2.49-66.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. HORWITZ S. B., KAPLAN N. O. HEXITOL DEHYDROGENASES OF BACILLUS SUBTILIS. J Biol Chem. 1964 Mar;239:830–838. [PubMed] [Google Scholar]
  5. Hengstenberg W., Penberthy W. K., Hill K. L., Morse M. L. Phosphotransferase system of Staphylococcus aureus: its requirement for the accumulation and metabolism of galactosides. J Bacteriol. 1969 Aug;99(2):383–388. doi: 10.1128/jb.99.2.383-388.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kaback H. R. The role of the phosphoenolpyruvate-phosphotransferase system in the transport of sugars by isolated membrane preparations of Escherichia coli. J Biol Chem. 1968 Jul 10;243(13):3711–3724. [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. MACLEOD R. A., ONOFREY E. Nutrition and metabolism of marine bacteria. II. Observations on the relation of sea water to the growth of marine bacteria. J Bacteriol. 1956 Jun;71(6):661–667. doi: 10.1128/jb.71.6.661-667.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. MACLEOD R. A., ONOFREY E. Nutrition and metabolism of marine bacteria. III. The relation of sodium and potassium to growth. J Cell Physiol. 1957 Dec;50(3):389–401. doi: 10.1002/jcp.1030500305. [DOI] [PubMed] [Google Scholar]
  10. Neville D. M., Jr Fractionation of cell membrane protein by disc electrophoresis. Biochim Biophys Acta. 1967 Jan 18;133(1):168–170. doi: 10.1016/0005-2795(67)90051-7. [DOI] [PubMed] [Google Scholar]
  11. PAYNE W. J., EAGON R. G., WILLIAMS A. K. Some observations on the physiology of Pseudomonas natriegens nov. spec. Antonie Van Leeuwenhoek. 1961;27:121–128. doi: 10.1007/BF02538432. [DOI] [PubMed] [Google Scholar]
  12. PAYNE W. J. Effects of sodium and potassium ions on growth and substrate penetration of a marine pseudomonad. J Bacteriol. 1960 Nov;80:696–700. doi: 10.1128/jb.80.5.696-700.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. PAYNE W. J. Studies on bacterial utilization of uronic acids. III. Induction of oxidative enzymes in a marine isolate. J Bacteriol. 1958 Sep;76(3):301–307. doi: 10.1128/jb.76.3.301-307.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. PRATT D., HAPPOLD F. C. Requirements for indole production by cells and extracts of a marine bacterium. J Bacteriol. 1960 Aug;80:232–236. doi: 10.1128/jb.80.2.232-236.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Phibbs P. V., Jr, Eagon R. G. Transport and phosphorylation of glucose, fructose, and mannitol by Pseudomonas aeruginosa. Arch Biochem Biophys. 1970 Jun;138(2):470–482. doi: 10.1016/0003-9861(70)90371-1. [DOI] [PubMed] [Google Scholar]
  16. RHODES M. E., PAYNE W. J. Further observations on effects of cations on enzyme induction in marine bacteria. Antonie Van Leeuwenhoek. 1962;28:302–314. doi: 10.1007/BF02538743. [DOI] [PubMed] [Google Scholar]
  17. Rhodes M. E., Payne W. J. Influence of Na+ on synthesis of a substrate entry mechanism in a marine bacterium. Proc Soc Exp Biol Med. 1967 Mar;124(3):953–955. doi: 10.3181/00379727-124-31894. [DOI] [PubMed] [Google Scholar]
  18. Rhodes M. E., Payne W. J. Influence of cations on spheroplasts of marine bacteria functioning as osmometers. Appl Microbiol. 1967 May;15(3):537–542. doi: 10.1128/am.15.3.537-542.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rhodes M. E., Payne W. J. Substrate binding by crude membranes and solubilized membrane extracts from Pseudomonas natriegens. Antonie Van Leeuwenhoek. 1968;34(3):298–312. doi: 10.1007/BF02046451. [DOI] [PubMed] [Google Scholar]
  20. Romano A. H., Eberhard S. J., Dingle S. L., McDowell T. D. Distribution of the phosphoenolpyruvate: glucose phosphotransferase system in bacteria. J Bacteriol. 1970 Nov;104(2):808–813. doi: 10.1128/jb.104.2.808-813.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Smith H. S., Pardee A. B. Accumulation of a protein required for division during the cell cycle of Escherichia coli. J Bacteriol. 1970 Mar;101(3):901–909. doi: 10.1128/jb.101.3.901-909.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. TOMLINSON N., MACLEOD R. A. Nutrition and metabolism of marine bacteria. IV. The participation of Na+, K+, and Mg++ salts in the oxidation of exogenous substrates by a marine bacterium. Can J Microbiol. 1957 Jun;3(4):627–638. doi: 10.1139/m57-068. [DOI] [PubMed] [Google Scholar]
  23. WADE H. E., MORGAN D. M. Detection of phosphate esters on paper chromatograms. Nature. 1953 Mar 21;171(4351):529–530. doi: 10.1038/171529a0. [DOI] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES