Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Oct;83(20):7583–7587. doi: 10.1073/pnas.83.20.7583

Nucleotide sequence of the mRNA encoding the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) from the chicken.

J S Cook, S L Weldon, J P Garcia-Ruiz, Y Hod, R W Hanson
PMCID: PMC386765  PMID: 3094011

Abstract

We have determined the sequence of the mRNA encoding cytosolic phosphoenolpyruvate carboxykinase (GTP) [GTP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.32] from the chicken and have deduced the primary structure of the protein. The message for the enzyme is 2762 bases long and encodes a protein of 622 amino acids with a molecular mass of 69,522 daltons. The 5' untranslated region is 246 nucleotides long and contains two nonfunctional AUG initiator codons. The 3' untranslated sequence is 649 bases long and contains multiple polyadenylylation signals. There are regions of dyad symmetry and an A + U-rich region within the 3' translated and untranslated sequences of the message. Such regions are also present in the mRNA for the enzyme from the rat and may be of functional significance. Conserved regions of the enzyme, that may interact with substrates, were identified by comparing the amino acid sequence of phosphoenolpyruvate carboxykinase with that of other proteins that use guanine nucleotides and phosphoenolpyruvate as substrates.

Full text

PDF
7583

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballard F. J., Hanson R. W. Purification of phosphoenolpyruvate carboxykinase from the cytosol fraction of rat liver and the immunochemical demonstration of differences between this enzyme and the mitochondrial phosphoenolpyruvate carboxykinase. J Biol Chem. 1969 Oct 25;244(20):5625–5630. [PubMed] [Google Scholar]
  2. Bannister D. W., Cleland M. E. The biochemistry of fatty liver and kidney syndrome of the fowl (Gallus domesticus): effects of fasting and fasting/re-feeding on renal gluconeogenesis in chicks fed on the syndrome-inducing diet. Int J Biochem. 1978;9(7):531–537. doi: 10.1016/0020-711x(78)90086-1. [DOI] [PubMed] [Google Scholar]
  3. Beale E. G., Chrapkiewicz N. B., Scoble H. A., Metz R. J., Quick D. P., Noble R. L., Donelson J. E., Biemann K., Granner D. K. Rat hepatic cytosolic phosphoenolpyruvate carboxykinase (GTP). Structures of the protein, messenger RNA, and gene. J Biol Chem. 1985 Sep 5;260(19):10748–10760. [PubMed] [Google Scholar]
  4. Biggin M. D., Gibson T. J., Hong G. F. Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc Natl Acad Sci U S A. 1983 Jul;80(13):3963–3965. doi: 10.1073/pnas.80.13.3963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brutlag D. L., Clayton J., Friedland P., Kedes L. H. SEQ: a nucleotide sequence analysis and recombination system. Nucleic Acids Res. 1982 Jan 11;10(1):279–294. doi: 10.1093/nar/10.1.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carlson G. M., Colombo G., Lardy H. A. A vicinal dithiol containing an essential cysteine in phosphoenolpyruvate carboxykinase (guanosine triphosphate) from cytosol of rat liver. Biochemistry. 1978 Dec 12;17(25):5329–5338. doi: 10.1021/bi00618a002. [DOI] [PubMed] [Google Scholar]
  7. Chou P. Y., Fasman G. D. Prediction of protein conformation. Biochemistry. 1974 Jan 15;13(2):222–245. doi: 10.1021/bi00699a002. [DOI] [PubMed] [Google Scholar]
  8. Cimbala M. A., Lamers W. H., Nelson K., Monahan J. E., Yoo-Warren H., Hanson R. W. Rapid changes in the concentration of phosphoenolpyruvate carboxykinase mRNA in rat liver and kidney. Effects of insulin and cyclic AMP. J Biol Chem. 1982 Jul 10;257(13):7629–7636. [PubMed] [Google Scholar]
  9. Garnier J., Osguthorpe D. J., Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol. 1978 Mar 25;120(1):97–120. doi: 10.1016/0022-2836(78)90297-8. [DOI] [PubMed] [Google Scholar]
  10. Hebda C. A., Nowak T. Phosphoenolpyruvate carboxykinase. Mn2+ and Mn2+ substrate complexes. J Biol Chem. 1982 May 25;257(10):5515–5522. [PubMed] [Google Scholar]
  11. Hod Y., Morris S. M., Hanson R. W. Induction by cAMP of the mRNA encoding the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) from the chicken. Identification and characterization of a cDNA clone for the enzyme. J Biol Chem. 1984 Dec 25;259(24):15603–15608. [PubMed] [Google Scholar]
  12. Hod Y., Utter M. F., Hanson R. W. The mitochondrial and cytosolic forms of avian phosphoenolpyruvate carboxykinase (GTP) are encoded by different messenger RNAs. J Biol Chem. 1982 Nov 25;257(22):13787–13794. [PubMed] [Google Scholar]
  13. Hod Y., Yoo-Warren H., Hanson R. W. The gene encoding the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) from the chicken. J Biol Chem. 1984 Dec 25;259(24):15609–15614. [PubMed] [Google Scholar]
  14. Jurnak F. Structure of the GDP domain of EF-Tu and location of the amino acids homologous to ras oncogene proteins. Science. 1985 Oct 4;230(4721):32–36. doi: 10.1126/science.3898365. [DOI] [PubMed] [Google Scholar]
  15. Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 1984 Jan 25;12(2):857–872. doi: 10.1093/nar/12.2.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lamers W. H., Hanson R. W., Meisner H. M. cAMP stimulates transcription of the gene for cytosolic phosphoenolpyruvate carboxykinase in rat liver nuclei. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5137–5141. doi: 10.1073/pnas.79.17.5137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McCormick F., Clark B. F., la Cour T. F., Kjeldgaard M., Norskov-Lauritsen L., Nyborg J. A model for the tertiary structure of p21, the product of the ras oncogene. Science. 1985 Oct 4;230(4721):78–82. doi: 10.1126/science.3898366. [DOI] [PubMed] [Google Scholar]
  18. Meijlink F., Curran T., Miller A. D., Verma I. M. Removal of a 67-base-pair sequence in the noncoding region of protooncogene fos converts it to a transforming gene. Proc Natl Acad Sci U S A. 1985 Aug;82(15):4987–4991. doi: 10.1073/pnas.82.15.4987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Miller A. D., Curran T., Verma I. M. c-fos protein can induce cellular transformation: a novel mechanism of activation of a cellular oncogene. Cell. 1984 Jan;36(1):51–60. doi: 10.1016/0092-8674(84)90073-4. [DOI] [PubMed] [Google Scholar]
  20. Mitchell R. L., Zokas L., Schreiber R. D., Verma I. M. Rapid induction of the expression of proto-oncogene fos during human monocytic differentiation. Cell. 1985 Jan;40(1):209–217. doi: 10.1016/0092-8674(85)90324-1. [DOI] [PubMed] [Google Scholar]
  21. Müller R., Bravo R., Burckhardt J., Curran T. Induction of c-fos gene and protein by growth factors precedes activation of c-myc. Nature. 1984 Dec 20;312(5996):716–720. doi: 10.1038/312716a0. [DOI] [PubMed] [Google Scholar]
  22. NORDLIE R. C., LARDY H. A. Mammalian liver phosphoneolpyruvate carboxykinase activities. J Biol Chem. 1963 Jul;238:2259–2263. [PubMed] [Google Scholar]
  23. Nelson K., Cimbala M. A., Hanson R. W. Regulation of phosphoenolpyruvate carboxykinase (GTP) mRNA turnover in rat liver. J Biol Chem. 1980 Sep 25;255(18):8509–8515. [PubMed] [Google Scholar]
  24. Piechaczyk M., Yang J. Q., Blanchard J. M., Jeanteur P., Marcu K. B. Posttranscriptional mechanisms are responsible for accumulation of truncated c-myc RNAs in murine plasma cell tumors. Cell. 1985 Sep;42(2):589–597. doi: 10.1016/0092-8674(85)90116-3. [DOI] [PubMed] [Google Scholar]
  25. SHRAGO E., LARDY H. A., NORDLIE R. C., FOSTER D. O. METABOLIC AND HORMONAL CONTROL OF PHOSPHOENOLPYRUVATE CARBOXYKINASE AND MALIC ENZYME IN RAT LIVER. J Biol Chem. 1963 Oct;238:3188–3192. [PubMed] [Google Scholar]
  26. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shen C. S., Mistry S. P. Development of gluconeogenic, glycolytic, and pentose-shunt enzymes in the chicken kidney. Poult Sci. 1979 May;58(3):663–667. doi: 10.3382/ps.0580663. [DOI] [PubMed] [Google Scholar]
  28. Shultz J., Hermodson M. A., Garner C. C., Herrmann K. M. The nucleotide sequence of the aroF gene of Escherichia coli and the amino acid sequence of the encoded protein, the tyrosine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase. J Biol Chem. 1984 Aug 10;259(15):9655–9661. [PubMed] [Google Scholar]
  29. Silverstein R., Lin C. C., Rawitch A. B. Evidence for an essential hydrophobic domain in the maintenance of phosphoenolpyruvate carboxykinase activity. Site-specific binding and inactivation by 1-anilinonaphthalene-8-sulfonate. J Biol Chem. 1980 Feb 25;255(4):1374–1379. [PubMed] [Google Scholar]
  30. Stalker D. M., Hiatt W. R., Comai L. A single amino acid substitution in the enzyme 5-enolpyruvylshikimate-3-phosphate synthase confers resistance to the herbicide glyphosate. J Biol Chem. 1985 Apr 25;260(8):4724–4728. [PubMed] [Google Scholar]
  31. Tomasselli A. G., Frank R., Schiltz E. The complete primary structure of GTP:AMP phosphotransferase from beef heart mitochondria. FEBS Lett. 1986 Jul 7;202(2):303–308. doi: 10.1016/0014-5793(86)80706-2. [DOI] [PubMed] [Google Scholar]
  32. Treisman R. Transient accumulation of c-fos RNA following serum stimulation requires a conserved 5' element and c-fos 3' sequences. Cell. 1985 Oct;42(3):889–902. doi: 10.1016/0092-8674(85)90285-5. [DOI] [PubMed] [Google Scholar]
  33. UTTER M. F., KURAHASHI K. Purification of oxalacetic carboxylase from chicken liver. J Biol Chem. 1954 Apr;207(2):787–802. [PubMed] [Google Scholar]
  34. Utter M. F., Chuang D. T. Gluconeogenesis as a compartmentalized activity. Biochem Soc Trans. 1978;6(1):11–16. doi: 10.1042/bst0060011a. [DOI] [PubMed] [Google Scholar]
  35. Watford M., Hod Y., Chiao Y. B., Utter M. F., Hanson R. W. The unique role of the kidney in gluconeogenesis in the chicken. The significance of a cytosolic form of phosphoenolpyruvate carboxykinase. J Biol Chem. 1981 Oct 10;256(19):10023–10027. [PubMed] [Google Scholar]
  36. Wynshaw-Boris A., Lugo T. G., Short J. M., Fournier R. E., Hanson R. W. Identification of a cAMP regulatory region in the gene for rat cytosolic phosphoenolpyruvate carboxykinase (GTP). Use of chimeric genes transfected into hepatoma cells. J Biol Chem. 1984 Oct 10;259(19):12161–12169. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES