Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Dec;75(12):5778–5782. doi: 10.1073/pnas.75.12.5778

Localization of the site of adenylylation of glutamine synthetase by electron microscopy of an enzyme-antibody complex

Raymond J Frink *, David Eisenberg †,, Dohn G Glitz *,
PMCID: PMC393058  PMID: 32536

Abstract

Antibodies to the nucleosidel,N6-ethenoadenosine have been used to localize the site of adenylylation of the glutamine synthetase [L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2] of Escherichia coli. Antibodies were induced in rabbits by injection of a bovine albumin-ethenoadenosine conjugate. The resulting antisera strongly bound ethenoadenosine, its 5′-nucleotide, or protein conjugates of the nucleoside; little or no crossreaction was seen to adenosine, AMP, or the protein carrier. Ethenoadenylylated glutamine synthetase was prepared by modification of the enzyme by the E. coli adenylyltransferase, using etheno-ATP as a substrate. The ethenoadenylylated glutamine synthetase was precipitated by antibodies to ethenoadenosine in conjunction with goat anti-rabbit gamma globulin. Electron micrographs of reaction mixtures of ethenoadenylylated glutamine synthetase and anti-ethenoadenosine showed individual enzyme molecules complexed with one or more antibodies and pairs of enzyme molecules crosslinked by a single antibody. The approximate site of adenylylation was located from the apparent area of contact between enzyme and antibody. We conclude that the adenylylation sites are on the periphery of the bilayered hexagonal disc, offset by 15 ± 10° from the 2-fold axis of symmetry through a vertex of the hexagon and 20 ± 10 Å from the plane between the layers of the disc.

Keywords: immune electron microscopy, ethenoadenosine, antibodies against nucleosides, regulation

Full text

PDF
5778

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Caban C. E., Ginsburg A. Glutamine synthetase adenylyltransferase from Escherichia coli: purification and physical and chemical properties. Biochemistry. 1976 Apr 6;15(7):1569–1580. doi: 10.1021/bi00652a030. [DOI] [PubMed] [Google Scholar]
  2. Cameron D. J., Erlanger B. F. Nucleic acid-reactive antibodies of restricted heterogeneity. Immunochemistry. 1976 Mar;13(3):263–269. doi: 10.1016/0019-2791(76)90225-1. [DOI] [PubMed] [Google Scholar]
  3. Drocourt J. L., Leng M. Antibodies to adenosine 5'-monophosphate: purification and specificity. Eur J Biochem. 1975 Aug 1;56(1):149–155. doi: 10.1111/j.1432-1033.1975.tb02217.x. [DOI] [PubMed] [Google Scholar]
  4. ERLANGER B. F., BEISER S. M. ANTIBODIES SPECIFIC FOR RIBONUCLEOSIDES AND RIBONUCLEOTIDES AND THEIR REACTION WITH DNA. Proc Natl Acad Sci U S A. 1964 Jul;52:68–74. doi: 10.1073/pnas.52.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Foor F., Janssen K. A., Magasanik B. Regulation of synthesis of glutamine synthetase by adenylylated glutamine synthetase. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4844–4848. doi: 10.1073/pnas.72.12.4844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Frey T. G., Eisenberg D., Eiserling F. A. Glutamine synthetase forms three- and seven-stranded helical cables. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3402–3406. doi: 10.1073/pnas.72.9.3402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gaillardin C. M., Magasanik B. Involvement of the product of the glnF gene in the autogenous regulation of glutamine synthetase formation in Klebsiella aerogenes. J Bacteriol. 1978 Mar;133(3):1329–1338. doi: 10.1128/jb.133.3.1329-1338.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Heidner E. G., Frey T. G., Held U., Weissman L. J., Fenna R. E., Lei M., Harel M., Kabsch H., Sweet R. M., Eisenberg D. New crystal forms of glutamine synthetase and implications for the molecular structure. J Mol Biol. 1978 Jun 25;122(2):163–173. doi: 10.1016/0022-2836(78)90033-5. [DOI] [PubMed] [Google Scholar]
  9. Hennig S. B., Ginsburg A. ATP: glutamine synthetase adenylytransferase from Escherichia coli: purification and properties of a low-molecular weight enzyme form. Arch Biochem Biophys. 1971 Jun;144(2):611–627. doi: 10.1016/0003-9861(71)90368-7. [DOI] [PubMed] [Google Scholar]
  10. Hohman R. J., Stadtman E. R. Use of AMP specific antibodies to differentiate between adenylylated and unadenylylated E. coli glutamine synthetase. Biochem Biophys Res Commun. 1978 Jun 14;82(3):865–870. doi: 10.1016/0006-291x(78)90863-x. [DOI] [PubMed] [Google Scholar]
  11. Humayun M. Z., Jacob T. M. Immunologic studies on nucleic acids and their components. I. An analysis of the specificity of anti-deoxyadenylate antibodies by a membrane-binding technique. Biochim Biophys Acta. 1973 Nov 26;331(1):41–53. doi: 10.1016/0005-2787(73)90417-6. [DOI] [PubMed] [Google Scholar]
  12. Janssen K. A., Magasanik B. Glutamine synthetase of Klebsiella aerogenes: genetic and physiological properties of mutants in the adenylylation system. J Bacteriol. 1977 Feb;129(2):993–1000. doi: 10.1128/jb.129.2.993-1000.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lake J. A., Kahan L. Ribosomal proteins S5, S11, S13 and S19 localized by electron microscopy of antibody-labeled subunits. J Mol Biol. 1975 Dec 25;99(4):631–644. doi: 10.1016/s0022-2836(75)80177-x. [DOI] [PubMed] [Google Scholar]
  14. Lake J. A., Pendergast M., Kahan L., Nomura M. Localization of Escherichia coli ribosomal proteins S4 and S14 by electron microscopy of antibody-labeled subunits. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4688–4692. doi: 10.1073/pnas.71.12.4688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lake J. A., Pendergast M., Kahan L., Nomura M. Ribosome structure: three-dimensional distribution of proteins S14 and S4. J Supramol Struct. 1974;2(2-4):189–195. doi: 10.1002/jss.400020213. [DOI] [PubMed] [Google Scholar]
  16. Politz S. M., Glitz D. G. Ribosome structure: localization of N6,N6-dimethyladenosine by electron microscopy of a ribosome-antibody complex. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1468–1472. doi: 10.1073/pnas.74.4.1468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rosenberg B. J., Erlanger B. F., Beiser S. M. Specific binding of ribonucleic acid by antiadenosine antibodies. Biochemistry. 1973 Jun 5;12(12):2191–2197. doi: 10.1021/bi00736a003. [DOI] [PubMed] [Google Scholar]
  18. Secrist J. A., 3rd, Barrio J. R., Leonard N. J., Weber G. Fluorescent modification of adenosine-containing coenzymes. Biological activities and spectroscopic properties. Biochemistry. 1972 Sep 12;11(19):3499–3506. doi: 10.1021/bi00769a001. [DOI] [PubMed] [Google Scholar]
  19. Shapiro B. M., Kingdon H. S., Stadtman E. R. Regulation of glutamine synthetase. VII. Adenylyl glutamine synthetase: a new form of the enzyme with altered regulatory and kinetic properties. Proc Natl Acad Sci U S A. 1967 Aug;58(2):642–649. doi: 10.1073/pnas.58.2.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shapiro B. M., Stadtman E. R. 5'-adenylyl-O-tyrosine. The novel phosphodiester residue of adenylylated glutamine synthetase from Escherichia coli. J Biol Chem. 1968 Jul 10;243(13):3769–3771. [PubMed] [Google Scholar]
  21. Tischendorf G. W., Zeichhardt H., Stöffler G. Architecture of the Escherichia coli ribosome as determined by immune electron microscopy. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4820–4824. doi: 10.1073/pnas.72.12.4820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tischendorf G. W., Zeichhardt H., Stöffler G. Determination of the location of proteins L14, L17, L18, L19, L22, L23 on the surface of the 5oS ribosomal subunit of Escherichia coli by immune electron microscopy. Mol Gen Genet. 1974;134(3):187–208. doi: 10.1007/BF00267715. [DOI] [PubMed] [Google Scholar]
  23. Tischendorf G. W., Zeichhardt H., Stöffler G. Location of proteins S5, S13 and S14 on the surface of the 3oS ribosomal subunit from Escherichia coli as determined by immune electron microscopy. Mol Gen Genet. 1974;134(3):209–223. doi: 10.1007/BF00267716. [DOI] [PubMed] [Google Scholar]
  24. Tyler B. Regulation of the assimilation of nitrogen compounds. Annu Rev Biochem. 1978;47:1127–1162. doi: 10.1146/annurev.bi.47.070178.005403. [DOI] [PubMed] [Google Scholar]
  25. Valentine R. C., Green N. M. Electron microscopy of an antibody-hapten complex. J Mol Biol. 1967 Aug 14;27(3):615–617. doi: 10.1016/0022-2836(67)90063-0. [DOI] [PubMed] [Google Scholar]
  26. Valentine R. C., Shapiro B. M., Stadtman E. R. Regulation of glutamine synthetase. XII. Electron microscopy of the enzyme from Escherichia coli. Biochemistry. 1968 Jun;7(6):2143–2152. doi: 10.1021/bi00846a017. [DOI] [PubMed] [Google Scholar]
  27. Villafranca J. J., Rhee S. G., Chock P. B. Topographical analysis of regulatory and metal ion binding sites on glutamine synthetase from Escherichia coli: 13C and 31P nuclear magnetic resonance and fluorescence energy transfer study. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1255–1259. doi: 10.1073/pnas.75.3.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Woolfolk C. A., Shapiro B., Stadtman E. R. Regulation of glutamine synthetase. I. Purification and properties of glutamine synthetase from Escherichia coli. Arch Biochem Biophys. 1966 Sep 26;116(1):177–192. doi: 10.1016/0003-9861(66)90026-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES